Metamath Proof Explorer


Theorem mpsylsyld

Description: Modus ponens combined with a double syllogism inference. (Contributed by Alan Sare, 22-Jul-2012)

Ref Expression
Hypotheses mpsylsyld.1
|- ph
mpsylsyld.2
|- ( ps -> ( ch -> th ) )
mpsylsyld.3
|- ( ph -> ( th -> ta ) )
Assertion mpsylsyld
|- ( ps -> ( ch -> ta ) )

Proof

Step Hyp Ref Expression
1 mpsylsyld.1
 |-  ph
2 mpsylsyld.2
 |-  ( ps -> ( ch -> th ) )
3 mpsylsyld.3
 |-  ( ph -> ( th -> ta ) )
4 1 a1i
 |-  ( ps -> ph )
5 4 2 3 sylsyld
 |-  ( ps -> ( ch -> ta ) )