Metamath Proof Explorer


Theorem mpt0

Description: A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Assertion mpt0
|- ( x e. (/) |-> A ) = (/)

Proof

Step Hyp Ref Expression
1 ral0
 |-  A. x e. (/) A e. _V
2 eqid
 |-  ( x e. (/) |-> A ) = ( x e. (/) |-> A )
3 2 fnmpt
 |-  ( A. x e. (/) A e. _V -> ( x e. (/) |-> A ) Fn (/) )
4 1 3 ax-mp
 |-  ( x e. (/) |-> A ) Fn (/)
5 fn0
 |-  ( ( x e. (/) |-> A ) Fn (/) <-> ( x e. (/) |-> A ) = (/) )
6 4 5 mpbi
 |-  ( x e. (/) |-> A ) = (/)