Step |
Hyp |
Ref |
Expression |
1 |
|
mptcnfimad.m |
|- M = ( x e. A |-> ( F " x ) ) |
2 |
|
mptcnfimad.f |
|- ( ph -> F : V -1-1-onto-> W ) |
3 |
|
mptcnfimad.a |
|- ( ph -> A C_ ~P V ) |
4 |
|
mptcnfimad.r |
|- ( ph -> ran M C_ ~P W ) |
5 |
|
mptcnfimad.v |
|- ( ph -> V e. U ) |
6 |
1
|
cnveqi |
|- `' M = `' ( x e. A |-> ( F " x ) ) |
7 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
8 |
|
f1of |
|- ( F : V -1-1-onto-> W -> F : V --> W ) |
9 |
2 8
|
syl |
|- ( ph -> F : V --> W ) |
10 |
9 5
|
fexd |
|- ( ph -> F e. _V ) |
11 |
10
|
imaexd |
|- ( ph -> ( F " x ) e. _V ) |
12 |
11
|
adantr |
|- ( ( ph /\ x e. A ) -> ( F " x ) e. _V ) |
13 |
1 7 12
|
elrnmpt1d |
|- ( ( ph /\ x e. A ) -> ( F " x ) e. ran M ) |
14 |
|
f1of1 |
|- ( F : V -1-1-onto-> W -> F : V -1-1-> W ) |
15 |
2 14
|
syl |
|- ( ph -> F : V -1-1-> W ) |
16 |
|
ssel |
|- ( A C_ ~P V -> ( x e. A -> x e. ~P V ) ) |
17 |
|
elpwi |
|- ( x e. ~P V -> x C_ V ) |
18 |
16 17
|
syl6 |
|- ( A C_ ~P V -> ( x e. A -> x C_ V ) ) |
19 |
3 18
|
syl |
|- ( ph -> ( x e. A -> x C_ V ) ) |
20 |
19
|
imp |
|- ( ( ph /\ x e. A ) -> x C_ V ) |
21 |
|
f1imacnv |
|- ( ( F : V -1-1-> W /\ x C_ V ) -> ( `' F " ( F " x ) ) = x ) |
22 |
21
|
eqcomd |
|- ( ( F : V -1-1-> W /\ x C_ V ) -> x = ( `' F " ( F " x ) ) ) |
23 |
15 20 22
|
syl2an2r |
|- ( ( ph /\ x e. A ) -> x = ( `' F " ( F " x ) ) ) |
24 |
13 23
|
jca |
|- ( ( ph /\ x e. A ) -> ( ( F " x ) e. ran M /\ x = ( `' F " ( F " x ) ) ) ) |
25 |
|
eleq1 |
|- ( y = ( F " x ) -> ( y e. ran M <-> ( F " x ) e. ran M ) ) |
26 |
|
imaeq2 |
|- ( y = ( F " x ) -> ( `' F " y ) = ( `' F " ( F " x ) ) ) |
27 |
26
|
eqeq2d |
|- ( y = ( F " x ) -> ( x = ( `' F " y ) <-> x = ( `' F " ( F " x ) ) ) ) |
28 |
25 27
|
anbi12d |
|- ( y = ( F " x ) -> ( ( y e. ran M /\ x = ( `' F " y ) ) <-> ( ( F " x ) e. ran M /\ x = ( `' F " ( F " x ) ) ) ) ) |
29 |
24 28
|
syl5ibrcom |
|- ( ( ph /\ x e. A ) -> ( y = ( F " x ) -> ( y e. ran M /\ x = ( `' F " y ) ) ) ) |
30 |
29
|
expimpd |
|- ( ph -> ( ( x e. A /\ y = ( F " x ) ) -> ( y e. ran M /\ x = ( `' F " y ) ) ) ) |
31 |
12
|
ralrimiva |
|- ( ph -> A. x e. A ( F " x ) e. _V ) |
32 |
1
|
fnmpt |
|- ( A. x e. A ( F " x ) e. _V -> M Fn A ) |
33 |
31 32
|
syl |
|- ( ph -> M Fn A ) |
34 |
|
fvelrnb |
|- ( M Fn A -> ( y e. ran M <-> E. x e. A ( M ` x ) = y ) ) |
35 |
33 34
|
syl |
|- ( ph -> ( y e. ran M <-> E. x e. A ( M ` x ) = y ) ) |
36 |
|
imaeq2 |
|- ( x = z -> ( F " x ) = ( F " z ) ) |
37 |
36
|
cbvmptv |
|- ( x e. A |-> ( F " x ) ) = ( z e. A |-> ( F " z ) ) |
38 |
1 37
|
eqtri |
|- M = ( z e. A |-> ( F " z ) ) |
39 |
38
|
a1i |
|- ( ( ph /\ x e. A ) -> M = ( z e. A |-> ( F " z ) ) ) |
40 |
|
simpr |
|- ( ( ( ph /\ x e. A ) /\ z = x ) -> z = x ) |
41 |
40
|
imaeq2d |
|- ( ( ( ph /\ x e. A ) /\ z = x ) -> ( F " z ) = ( F " x ) ) |
42 |
39 41 7 12
|
fvmptd |
|- ( ( ph /\ x e. A ) -> ( M ` x ) = ( F " x ) ) |
43 |
42
|
eqeq1d |
|- ( ( ph /\ x e. A ) -> ( ( M ` x ) = y <-> ( F " x ) = y ) ) |
44 |
26
|
eqcoms |
|- ( ( F " x ) = y -> ( `' F " y ) = ( `' F " ( F " x ) ) ) |
45 |
44
|
adantl |
|- ( ( ( ph /\ x e. A ) /\ ( F " x ) = y ) -> ( `' F " y ) = ( `' F " ( F " x ) ) ) |
46 |
15 20 21
|
syl2an2r |
|- ( ( ph /\ x e. A ) -> ( `' F " ( F " x ) ) = x ) |
47 |
46 7
|
eqeltrd |
|- ( ( ph /\ x e. A ) -> ( `' F " ( F " x ) ) e. A ) |
48 |
47
|
adantr |
|- ( ( ( ph /\ x e. A ) /\ ( F " x ) = y ) -> ( `' F " ( F " x ) ) e. A ) |
49 |
45 48
|
eqeltrd |
|- ( ( ( ph /\ x e. A ) /\ ( F " x ) = y ) -> ( `' F " y ) e. A ) |
50 |
49
|
ex |
|- ( ( ph /\ x e. A ) -> ( ( F " x ) = y -> ( `' F " y ) e. A ) ) |
51 |
43 50
|
sylbid |
|- ( ( ph /\ x e. A ) -> ( ( M ` x ) = y -> ( `' F " y ) e. A ) ) |
52 |
51
|
rexlimdva |
|- ( ph -> ( E. x e. A ( M ` x ) = y -> ( `' F " y ) e. A ) ) |
53 |
35 52
|
sylbid |
|- ( ph -> ( y e. ran M -> ( `' F " y ) e. A ) ) |
54 |
53
|
imp |
|- ( ( ph /\ y e. ran M ) -> ( `' F " y ) e. A ) |
55 |
|
f1ofo |
|- ( F : V -1-1-onto-> W -> F : V -onto-> W ) |
56 |
2 55
|
syl |
|- ( ph -> F : V -onto-> W ) |
57 |
|
ssel |
|- ( ran M C_ ~P W -> ( y e. ran M -> y e. ~P W ) ) |
58 |
|
elpwi |
|- ( y e. ~P W -> y C_ W ) |
59 |
57 58
|
syl6 |
|- ( ran M C_ ~P W -> ( y e. ran M -> y C_ W ) ) |
60 |
4 59
|
syl |
|- ( ph -> ( y e. ran M -> y C_ W ) ) |
61 |
60
|
imp |
|- ( ( ph /\ y e. ran M ) -> y C_ W ) |
62 |
|
foimacnv |
|- ( ( F : V -onto-> W /\ y C_ W ) -> ( F " ( `' F " y ) ) = y ) |
63 |
56 61 62
|
syl2an2r |
|- ( ( ph /\ y e. ran M ) -> ( F " ( `' F " y ) ) = y ) |
64 |
63
|
eqcomd |
|- ( ( ph /\ y e. ran M ) -> y = ( F " ( `' F " y ) ) ) |
65 |
54 64
|
jca |
|- ( ( ph /\ y e. ran M ) -> ( ( `' F " y ) e. A /\ y = ( F " ( `' F " y ) ) ) ) |
66 |
|
eleq1 |
|- ( x = ( `' F " y ) -> ( x e. A <-> ( `' F " y ) e. A ) ) |
67 |
|
imaeq2 |
|- ( x = ( `' F " y ) -> ( F " x ) = ( F " ( `' F " y ) ) ) |
68 |
67
|
eqeq2d |
|- ( x = ( `' F " y ) -> ( y = ( F " x ) <-> y = ( F " ( `' F " y ) ) ) ) |
69 |
66 68
|
anbi12d |
|- ( x = ( `' F " y ) -> ( ( x e. A /\ y = ( F " x ) ) <-> ( ( `' F " y ) e. A /\ y = ( F " ( `' F " y ) ) ) ) ) |
70 |
65 69
|
syl5ibrcom |
|- ( ( ph /\ y e. ran M ) -> ( x = ( `' F " y ) -> ( x e. A /\ y = ( F " x ) ) ) ) |
71 |
70
|
expimpd |
|- ( ph -> ( ( y e. ran M /\ x = ( `' F " y ) ) -> ( x e. A /\ y = ( F " x ) ) ) ) |
72 |
30 71
|
impbid |
|- ( ph -> ( ( x e. A /\ y = ( F " x ) ) <-> ( y e. ran M /\ x = ( `' F " y ) ) ) ) |
73 |
72
|
mptcnv |
|- ( ph -> `' ( x e. A |-> ( F " x ) ) = ( y e. ran M |-> ( `' F " y ) ) ) |
74 |
6 73
|
eqtrid |
|- ( ph -> `' M = ( y e. ran M |-> ( `' F " y ) ) ) |