| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mptcnfimad.m |
|- M = ( x e. A |-> ( F " x ) ) |
| 2 |
|
mptcnfimad.f |
|- ( ph -> F : V -1-1-onto-> W ) |
| 3 |
|
mptcnfimad.a |
|- ( ph -> A C_ ~P V ) |
| 4 |
|
mptcnfimad.r |
|- ( ph -> ran M C_ ~P W ) |
| 5 |
|
mptcnfimad.v |
|- ( ph -> V e. U ) |
| 6 |
1
|
cnveqi |
|- `' M = `' ( x e. A |-> ( F " x ) ) |
| 7 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
| 8 |
|
f1of |
|- ( F : V -1-1-onto-> W -> F : V --> W ) |
| 9 |
2 8
|
syl |
|- ( ph -> F : V --> W ) |
| 10 |
9 5
|
fexd |
|- ( ph -> F e. _V ) |
| 11 |
10
|
imaexd |
|- ( ph -> ( F " x ) e. _V ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ x e. A ) -> ( F " x ) e. _V ) |
| 13 |
1 7 12
|
elrnmpt1d |
|- ( ( ph /\ x e. A ) -> ( F " x ) e. ran M ) |
| 14 |
|
f1of1 |
|- ( F : V -1-1-onto-> W -> F : V -1-1-> W ) |
| 15 |
2 14
|
syl |
|- ( ph -> F : V -1-1-> W ) |
| 16 |
|
ssel |
|- ( A C_ ~P V -> ( x e. A -> x e. ~P V ) ) |
| 17 |
|
elpwi |
|- ( x e. ~P V -> x C_ V ) |
| 18 |
16 17
|
syl6 |
|- ( A C_ ~P V -> ( x e. A -> x C_ V ) ) |
| 19 |
3 18
|
syl |
|- ( ph -> ( x e. A -> x C_ V ) ) |
| 20 |
19
|
imp |
|- ( ( ph /\ x e. A ) -> x C_ V ) |
| 21 |
|
f1imacnv |
|- ( ( F : V -1-1-> W /\ x C_ V ) -> ( `' F " ( F " x ) ) = x ) |
| 22 |
21
|
eqcomd |
|- ( ( F : V -1-1-> W /\ x C_ V ) -> x = ( `' F " ( F " x ) ) ) |
| 23 |
15 20 22
|
syl2an2r |
|- ( ( ph /\ x e. A ) -> x = ( `' F " ( F " x ) ) ) |
| 24 |
13 23
|
jca |
|- ( ( ph /\ x e. A ) -> ( ( F " x ) e. ran M /\ x = ( `' F " ( F " x ) ) ) ) |
| 25 |
|
eleq1 |
|- ( y = ( F " x ) -> ( y e. ran M <-> ( F " x ) e. ran M ) ) |
| 26 |
|
imaeq2 |
|- ( y = ( F " x ) -> ( `' F " y ) = ( `' F " ( F " x ) ) ) |
| 27 |
26
|
eqeq2d |
|- ( y = ( F " x ) -> ( x = ( `' F " y ) <-> x = ( `' F " ( F " x ) ) ) ) |
| 28 |
25 27
|
anbi12d |
|- ( y = ( F " x ) -> ( ( y e. ran M /\ x = ( `' F " y ) ) <-> ( ( F " x ) e. ran M /\ x = ( `' F " ( F " x ) ) ) ) ) |
| 29 |
24 28
|
syl5ibrcom |
|- ( ( ph /\ x e. A ) -> ( y = ( F " x ) -> ( y e. ran M /\ x = ( `' F " y ) ) ) ) |
| 30 |
29
|
expimpd |
|- ( ph -> ( ( x e. A /\ y = ( F " x ) ) -> ( y e. ran M /\ x = ( `' F " y ) ) ) ) |
| 31 |
12
|
ralrimiva |
|- ( ph -> A. x e. A ( F " x ) e. _V ) |
| 32 |
1
|
fnmpt |
|- ( A. x e. A ( F " x ) e. _V -> M Fn A ) |
| 33 |
31 32
|
syl |
|- ( ph -> M Fn A ) |
| 34 |
|
fvelrnb |
|- ( M Fn A -> ( y e. ran M <-> E. x e. A ( M ` x ) = y ) ) |
| 35 |
33 34
|
syl |
|- ( ph -> ( y e. ran M <-> E. x e. A ( M ` x ) = y ) ) |
| 36 |
|
imaeq2 |
|- ( x = z -> ( F " x ) = ( F " z ) ) |
| 37 |
36
|
cbvmptv |
|- ( x e. A |-> ( F " x ) ) = ( z e. A |-> ( F " z ) ) |
| 38 |
1 37
|
eqtri |
|- M = ( z e. A |-> ( F " z ) ) |
| 39 |
38
|
a1i |
|- ( ( ph /\ x e. A ) -> M = ( z e. A |-> ( F " z ) ) ) |
| 40 |
|
simpr |
|- ( ( ( ph /\ x e. A ) /\ z = x ) -> z = x ) |
| 41 |
40
|
imaeq2d |
|- ( ( ( ph /\ x e. A ) /\ z = x ) -> ( F " z ) = ( F " x ) ) |
| 42 |
39 41 7 12
|
fvmptd |
|- ( ( ph /\ x e. A ) -> ( M ` x ) = ( F " x ) ) |
| 43 |
42
|
eqeq1d |
|- ( ( ph /\ x e. A ) -> ( ( M ` x ) = y <-> ( F " x ) = y ) ) |
| 44 |
26
|
eqcoms |
|- ( ( F " x ) = y -> ( `' F " y ) = ( `' F " ( F " x ) ) ) |
| 45 |
44
|
adantl |
|- ( ( ( ph /\ x e. A ) /\ ( F " x ) = y ) -> ( `' F " y ) = ( `' F " ( F " x ) ) ) |
| 46 |
15 20 21
|
syl2an2r |
|- ( ( ph /\ x e. A ) -> ( `' F " ( F " x ) ) = x ) |
| 47 |
46 7
|
eqeltrd |
|- ( ( ph /\ x e. A ) -> ( `' F " ( F " x ) ) e. A ) |
| 48 |
47
|
adantr |
|- ( ( ( ph /\ x e. A ) /\ ( F " x ) = y ) -> ( `' F " ( F " x ) ) e. A ) |
| 49 |
45 48
|
eqeltrd |
|- ( ( ( ph /\ x e. A ) /\ ( F " x ) = y ) -> ( `' F " y ) e. A ) |
| 50 |
49
|
ex |
|- ( ( ph /\ x e. A ) -> ( ( F " x ) = y -> ( `' F " y ) e. A ) ) |
| 51 |
43 50
|
sylbid |
|- ( ( ph /\ x e. A ) -> ( ( M ` x ) = y -> ( `' F " y ) e. A ) ) |
| 52 |
51
|
rexlimdva |
|- ( ph -> ( E. x e. A ( M ` x ) = y -> ( `' F " y ) e. A ) ) |
| 53 |
35 52
|
sylbid |
|- ( ph -> ( y e. ran M -> ( `' F " y ) e. A ) ) |
| 54 |
53
|
imp |
|- ( ( ph /\ y e. ran M ) -> ( `' F " y ) e. A ) |
| 55 |
|
f1ofo |
|- ( F : V -1-1-onto-> W -> F : V -onto-> W ) |
| 56 |
2 55
|
syl |
|- ( ph -> F : V -onto-> W ) |
| 57 |
|
ssel |
|- ( ran M C_ ~P W -> ( y e. ran M -> y e. ~P W ) ) |
| 58 |
|
elpwi |
|- ( y e. ~P W -> y C_ W ) |
| 59 |
57 58
|
syl6 |
|- ( ran M C_ ~P W -> ( y e. ran M -> y C_ W ) ) |
| 60 |
4 59
|
syl |
|- ( ph -> ( y e. ran M -> y C_ W ) ) |
| 61 |
60
|
imp |
|- ( ( ph /\ y e. ran M ) -> y C_ W ) |
| 62 |
|
foimacnv |
|- ( ( F : V -onto-> W /\ y C_ W ) -> ( F " ( `' F " y ) ) = y ) |
| 63 |
56 61 62
|
syl2an2r |
|- ( ( ph /\ y e. ran M ) -> ( F " ( `' F " y ) ) = y ) |
| 64 |
63
|
eqcomd |
|- ( ( ph /\ y e. ran M ) -> y = ( F " ( `' F " y ) ) ) |
| 65 |
54 64
|
jca |
|- ( ( ph /\ y e. ran M ) -> ( ( `' F " y ) e. A /\ y = ( F " ( `' F " y ) ) ) ) |
| 66 |
|
eleq1 |
|- ( x = ( `' F " y ) -> ( x e. A <-> ( `' F " y ) e. A ) ) |
| 67 |
|
imaeq2 |
|- ( x = ( `' F " y ) -> ( F " x ) = ( F " ( `' F " y ) ) ) |
| 68 |
67
|
eqeq2d |
|- ( x = ( `' F " y ) -> ( y = ( F " x ) <-> y = ( F " ( `' F " y ) ) ) ) |
| 69 |
66 68
|
anbi12d |
|- ( x = ( `' F " y ) -> ( ( x e. A /\ y = ( F " x ) ) <-> ( ( `' F " y ) e. A /\ y = ( F " ( `' F " y ) ) ) ) ) |
| 70 |
65 69
|
syl5ibrcom |
|- ( ( ph /\ y e. ran M ) -> ( x = ( `' F " y ) -> ( x e. A /\ y = ( F " x ) ) ) ) |
| 71 |
70
|
expimpd |
|- ( ph -> ( ( y e. ran M /\ x = ( `' F " y ) ) -> ( x e. A /\ y = ( F " x ) ) ) ) |
| 72 |
30 71
|
impbid |
|- ( ph -> ( ( x e. A /\ y = ( F " x ) ) <-> ( y e. ran M /\ x = ( `' F " y ) ) ) ) |
| 73 |
72
|
mptcnv |
|- ( ph -> `' ( x e. A |-> ( F " x ) ) = ( y e. ran M |-> ( `' F " y ) ) ) |
| 74 |
6 73
|
eqtrid |
|- ( ph -> `' M = ( y e. ran M |-> ( `' F " y ) ) ) |