Step |
Hyp |
Ref |
Expression |
1 |
|
mptcnv.1 |
|- ( ph -> ( ( x e. A /\ y = B ) <-> ( y e. C /\ x = D ) ) ) |
2 |
1
|
opabbidv |
|- ( ph -> { <. y , x >. | ( x e. A /\ y = B ) } = { <. y , x >. | ( y e. C /\ x = D ) } ) |
3 |
|
df-mpt |
|- ( x e. A |-> B ) = { <. x , y >. | ( x e. A /\ y = B ) } |
4 |
3
|
cnveqi |
|- `' ( x e. A |-> B ) = `' { <. x , y >. | ( x e. A /\ y = B ) } |
5 |
|
cnvopab |
|- `' { <. x , y >. | ( x e. A /\ y = B ) } = { <. y , x >. | ( x e. A /\ y = B ) } |
6 |
4 5
|
eqtri |
|- `' ( x e. A |-> B ) = { <. y , x >. | ( x e. A /\ y = B ) } |
7 |
|
df-mpt |
|- ( y e. C |-> D ) = { <. y , x >. | ( y e. C /\ x = D ) } |
8 |
2 6 7
|
3eqtr4g |
|- ( ph -> `' ( x e. A |-> B ) = ( y e. C |-> D ) ) |