| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funmpt |
|- Fun ( x e. A |-> B ) |
| 2 |
|
ctex |
|- ( A ~<_ _om -> A e. _V ) |
| 3 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
| 4 |
3
|
dmmptss |
|- dom ( x e. A |-> B ) C_ A |
| 5 |
|
ssdomg |
|- ( A e. _V -> ( dom ( x e. A |-> B ) C_ A -> dom ( x e. A |-> B ) ~<_ A ) ) |
| 6 |
2 4 5
|
mpisyl |
|- ( A ~<_ _om -> dom ( x e. A |-> B ) ~<_ A ) |
| 7 |
|
domtr |
|- ( ( dom ( x e. A |-> B ) ~<_ A /\ A ~<_ _om ) -> dom ( x e. A |-> B ) ~<_ _om ) |
| 8 |
6 7
|
mpancom |
|- ( A ~<_ _om -> dom ( x e. A |-> B ) ~<_ _om ) |
| 9 |
|
funfn |
|- ( Fun ( x e. A |-> B ) <-> ( x e. A |-> B ) Fn dom ( x e. A |-> B ) ) |
| 10 |
|
fnct |
|- ( ( ( x e. A |-> B ) Fn dom ( x e. A |-> B ) /\ dom ( x e. A |-> B ) ~<_ _om ) -> ( x e. A |-> B ) ~<_ _om ) |
| 11 |
9 10
|
sylanb |
|- ( ( Fun ( x e. A |-> B ) /\ dom ( x e. A |-> B ) ~<_ _om ) -> ( x e. A |-> B ) ~<_ _om ) |
| 12 |
1 8 11
|
sylancr |
|- ( A ~<_ _om -> ( x e. A |-> B ) ~<_ _om ) |