Step |
Hyp |
Ref |
Expression |
1 |
|
funmpt |
|- Fun ( x e. A |-> B ) |
2 |
|
ctex |
|- ( A ~<_ _om -> A e. _V ) |
3 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
4 |
3
|
dmmptss |
|- dom ( x e. A |-> B ) C_ A |
5 |
|
ssdomg |
|- ( A e. _V -> ( dom ( x e. A |-> B ) C_ A -> dom ( x e. A |-> B ) ~<_ A ) ) |
6 |
2 4 5
|
mpisyl |
|- ( A ~<_ _om -> dom ( x e. A |-> B ) ~<_ A ) |
7 |
|
domtr |
|- ( ( dom ( x e. A |-> B ) ~<_ A /\ A ~<_ _om ) -> dom ( x e. A |-> B ) ~<_ _om ) |
8 |
6 7
|
mpancom |
|- ( A ~<_ _om -> dom ( x e. A |-> B ) ~<_ _om ) |
9 |
|
funfn |
|- ( Fun ( x e. A |-> B ) <-> ( x e. A |-> B ) Fn dom ( x e. A |-> B ) ) |
10 |
|
fnct |
|- ( ( ( x e. A |-> B ) Fn dom ( x e. A |-> B ) /\ dom ( x e. A |-> B ) ~<_ _om ) -> ( x e. A |-> B ) ~<_ _om ) |
11 |
9 10
|
sylanb |
|- ( ( Fun ( x e. A |-> B ) /\ dom ( x e. A |-> B ) ~<_ _om ) -> ( x e. A |-> B ) ~<_ _om ) |
12 |
1 8 11
|
sylancr |
|- ( A ~<_ _om -> ( x e. A |-> B ) ~<_ _om ) |