Description: A condition for a mapping to be an element of a Euclidean space. (Contributed by Scott Fenton, 7-Jun-2013) (Proof shortened by SN, 2-Feb-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mptelee | |- ( N e. NN -> ( ( k e. ( 1 ... N ) |-> ( A F B ) ) e. ( EE ` N ) <-> A. k e. ( 1 ... N ) ( A F B ) e. RR ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elee | |- ( N e. NN -> ( ( k e. ( 1 ... N ) |-> ( A F B ) ) e. ( EE ` N ) <-> ( k e. ( 1 ... N ) |-> ( A F B ) ) : ( 1 ... N ) --> RR ) ) |
|
| 2 | eqid | |- ( k e. ( 1 ... N ) |-> ( A F B ) ) = ( k e. ( 1 ... N ) |-> ( A F B ) ) |
|
| 3 | 2 | fmpt | |- ( A. k e. ( 1 ... N ) ( A F B ) e. RR <-> ( k e. ( 1 ... N ) |-> ( A F B ) ) : ( 1 ... N ) --> RR ) |
| 4 | 1 3 | bitr4di | |- ( N e. NN -> ( ( k e. ( 1 ... N ) |-> ( A F B ) ) e. ( EE ` N ) <-> A. k e. ( 1 ... N ) ( A F B ) e. RR ) ) |