| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mptelpm.b |  |-  ( ( ph /\ x e. A ) -> B e. C ) | 
						
							| 2 |  | mptelpm.a |  |-  ( ph -> A C_ D ) | 
						
							| 3 |  | mptelpm.c |  |-  ( ph -> C e. V ) | 
						
							| 4 |  | mptelpm.d |  |-  ( ph -> D e. W ) | 
						
							| 5 | 1 | fmpttd |  |-  ( ph -> ( x e. A |-> B ) : A --> C ) | 
						
							| 6 |  | eqid |  |-  ( x e. A |-> B ) = ( x e. A |-> B ) | 
						
							| 7 | 6 1 | dmmptd |  |-  ( ph -> dom ( x e. A |-> B ) = A ) | 
						
							| 8 | 7 | eqcomd |  |-  ( ph -> A = dom ( x e. A |-> B ) ) | 
						
							| 9 | 8 | feq2d |  |-  ( ph -> ( ( x e. A |-> B ) : A --> C <-> ( x e. A |-> B ) : dom ( x e. A |-> B ) --> C ) ) | 
						
							| 10 | 5 9 | mpbid |  |-  ( ph -> ( x e. A |-> B ) : dom ( x e. A |-> B ) --> C ) | 
						
							| 11 | 7 2 | eqsstrd |  |-  ( ph -> dom ( x e. A |-> B ) C_ D ) | 
						
							| 12 | 10 11 | jca |  |-  ( ph -> ( ( x e. A |-> B ) : dom ( x e. A |-> B ) --> C /\ dom ( x e. A |-> B ) C_ D ) ) | 
						
							| 13 |  | elpm2g |  |-  ( ( C e. V /\ D e. W ) -> ( ( x e. A |-> B ) e. ( C ^pm D ) <-> ( ( x e. A |-> B ) : dom ( x e. A |-> B ) --> C /\ dom ( x e. A |-> B ) C_ D ) ) ) | 
						
							| 14 | 3 4 13 | syl2anc |  |-  ( ph -> ( ( x e. A |-> B ) e. ( C ^pm D ) <-> ( ( x e. A |-> B ) : dom ( x e. A |-> B ) --> C /\ dom ( x e. A |-> B ) C_ D ) ) ) | 
						
							| 15 | 12 14 | mpbird |  |-  ( ph -> ( x e. A |-> B ) e. ( C ^pm D ) ) |