| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mpteq12da.1 |
|- F/ x ph |
| 2 |
|
mpteq12da.2 |
|- ( ph -> A = C ) |
| 3 |
|
mpteq12da.3 |
|- ( ( ph /\ x e. A ) -> B = D ) |
| 4 |
|
nfv |
|- F/ y ph |
| 5 |
3
|
eqeq2d |
|- ( ( ph /\ x e. A ) -> ( y = B <-> y = D ) ) |
| 6 |
5
|
pm5.32da |
|- ( ph -> ( ( x e. A /\ y = B ) <-> ( x e. A /\ y = D ) ) ) |
| 7 |
2
|
eleq2d |
|- ( ph -> ( x e. A <-> x e. C ) ) |
| 8 |
7
|
anbi1d |
|- ( ph -> ( ( x e. A /\ y = D ) <-> ( x e. C /\ y = D ) ) ) |
| 9 |
6 8
|
bitrd |
|- ( ph -> ( ( x e. A /\ y = B ) <-> ( x e. C /\ y = D ) ) ) |
| 10 |
1 4 9
|
opabbid |
|- ( ph -> { <. x , y >. | ( x e. A /\ y = B ) } = { <. x , y >. | ( x e. C /\ y = D ) } ) |
| 11 |
|
df-mpt |
|- ( x e. A |-> B ) = { <. x , y >. | ( x e. A /\ y = B ) } |
| 12 |
|
df-mpt |
|- ( x e. C |-> D ) = { <. x , y >. | ( x e. C /\ y = D ) } |
| 13 |
10 11 12
|
3eqtr4g |
|- ( ph -> ( x e. A |-> B ) = ( x e. C |-> D ) ) |