Metamath Proof Explorer


Theorem mpteq12f

Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013)

Ref Expression
Assertion mpteq12f
|- ( ( A. x A = C /\ A. x e. A B = D ) -> ( x e. A |-> B ) = ( x e. C |-> D ) )

Proof

Step Hyp Ref Expression
1 nfa1
 |-  F/ x A. x A = C
2 nfra1
 |-  F/ x A. x e. A B = D
3 1 2 nfan
 |-  F/ x ( A. x A = C /\ A. x e. A B = D )
4 nfv
 |-  F/ y ( A. x A = C /\ A. x e. A B = D )
5 rspa
 |-  ( ( A. x e. A B = D /\ x e. A ) -> B = D )
6 5 eqeq2d
 |-  ( ( A. x e. A B = D /\ x e. A ) -> ( y = B <-> y = D ) )
7 6 pm5.32da
 |-  ( A. x e. A B = D -> ( ( x e. A /\ y = B ) <-> ( x e. A /\ y = D ) ) )
8 sp
 |-  ( A. x A = C -> A = C )
9 8 eleq2d
 |-  ( A. x A = C -> ( x e. A <-> x e. C ) )
10 9 anbi1d
 |-  ( A. x A = C -> ( ( x e. A /\ y = D ) <-> ( x e. C /\ y = D ) ) )
11 7 10 sylan9bbr
 |-  ( ( A. x A = C /\ A. x e. A B = D ) -> ( ( x e. A /\ y = B ) <-> ( x e. C /\ y = D ) ) )
12 3 4 11 opabbid
 |-  ( ( A. x A = C /\ A. x e. A B = D ) -> { <. x , y >. | ( x e. A /\ y = B ) } = { <. x , y >. | ( x e. C /\ y = D ) } )
13 df-mpt
 |-  ( x e. A |-> B ) = { <. x , y >. | ( x e. A /\ y = B ) }
14 df-mpt
 |-  ( x e. C |-> D ) = { <. x , y >. | ( x e. C /\ y = D ) }
15 12 13 14 3eqtr4g
 |-  ( ( A. x A = C /\ A. x e. A B = D ) -> ( x e. A |-> B ) = ( x e. C |-> D ) )