Metamath Proof Explorer


Theorem mpteq12i

Description: An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010) (Revised by Mario Carneiro, 16-Dec-2013)

Ref Expression
Hypotheses mpteq12i.1
|- A = C
mpteq12i.2
|- B = D
Assertion mpteq12i
|- ( x e. A |-> B ) = ( x e. C |-> D )

Proof

Step Hyp Ref Expression
1 mpteq12i.1
 |-  A = C
2 mpteq12i.2
 |-  B = D
3 1 a1i
 |-  ( T. -> A = C )
4 2 a1i
 |-  ( T. -> B = D )
5 3 4 mpteq12dv
 |-  ( T. -> ( x e. A |-> B ) = ( x e. C |-> D ) )
6 5 mptru
 |-  ( x e. A |-> B ) = ( x e. C |-> D )