Metamath Proof Explorer


Theorem mpteq1d

Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 11-Jun-2016)

Ref Expression
Hypothesis mpteq1d.1
|- ( ph -> A = B )
Assertion mpteq1d
|- ( ph -> ( x e. A |-> C ) = ( x e. B |-> C ) )

Proof

Step Hyp Ref Expression
1 mpteq1d.1
 |-  ( ph -> A = B )
2 mpteq1
 |-  ( A = B -> ( x e. A |-> C ) = ( x e. B |-> C ) )
3 1 2 syl
 |-  ( ph -> ( x e. A |-> C ) = ( x e. B |-> C ) )