Metamath Proof Explorer


Theorem mpteq1df

Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021) (Proof shortened by SN, 11-Nov-2024)

Ref Expression
Hypotheses mpteq1df.1
|- F/ x ph
mpteq1df.2
|- ( ph -> A = B )
Assertion mpteq1df
|- ( ph -> ( x e. A |-> C ) = ( x e. B |-> C ) )

Proof

Step Hyp Ref Expression
1 mpteq1df.1
 |-  F/ x ph
2 mpteq1df.2
 |-  ( ph -> A = B )
3 eqidd
 |-  ( ph -> C = C )
4 1 2 3 mpteq12df
 |-  ( ph -> ( x e. A |-> C ) = ( x e. B |-> C ) )