Metamath Proof Explorer


Theorem mpteq1df

Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses mpteq1df.1
|- F/ x ph
mpteq1df.2
|- ( ph -> A = B )
Assertion mpteq1df
|- ( ph -> ( x e. A |-> C ) = ( x e. B |-> C ) )

Proof

Step Hyp Ref Expression
1 mpteq1df.1
 |-  F/ x ph
2 mpteq1df.2
 |-  ( ph -> A = B )
3 1 2 alrimi
 |-  ( ph -> A. x A = B )
4 eqid
 |-  C = C
5 4 rgenw
 |-  A. x e. A C = C
6 mpteq12f
 |-  ( ( A. x A = B /\ A. x e. A C = C ) -> ( x e. A |-> C ) = ( x e. B |-> C ) )
7 3 5 6 sylancl
 |-  ( ph -> ( x e. A |-> C ) = ( x e. B |-> C ) )