Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mpteq1df.1 | |- F/ x ph |
|
mpteq1df.2 | |- ( ph -> A = B ) |
||
Assertion | mpteq1df | |- ( ph -> ( x e. A |-> C ) = ( x e. B |-> C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq1df.1 | |- F/ x ph |
|
2 | mpteq1df.2 | |- ( ph -> A = B ) |
|
3 | 1 2 | alrimi | |- ( ph -> A. x A = B ) |
4 | eqid | |- C = C |
|
5 | 4 | rgenw | |- A. x e. A C = C |
6 | mpteq12f | |- ( ( A. x A = B /\ A. x e. A C = C ) -> ( x e. A |-> C ) = ( x e. B |-> C ) ) |
|
7 | 3 5 6 | sylancl | |- ( ph -> ( x e. A |-> C ) = ( x e. B |-> C ) ) |