Metamath Proof Explorer


Theorem mpteq2dfa

Description: Slightly more general equality inference for the maps-to notation. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses mpteq2dfa.1
|- F/ x ph
mpteq2dfa.2
|- ( ( ph /\ x e. A ) -> B = C )
Assertion mpteq2dfa
|- ( ph -> ( x e. A |-> B ) = ( x e. A |-> C ) )

Proof

Step Hyp Ref Expression
1 mpteq2dfa.1
 |-  F/ x ph
2 mpteq2dfa.2
 |-  ( ( ph /\ x e. A ) -> B = C )
3 1 2 mpteq2da
 |-  ( ph -> ( x e. A |-> B ) = ( x e. A |-> C ) )