Metamath Proof Explorer


Theorem mpteq2dva

Description: Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012)

Ref Expression
Hypothesis mpteq2dva.1
|- ( ( ph /\ x e. A ) -> B = C )
Assertion mpteq2dva
|- ( ph -> ( x e. A |-> B ) = ( x e. A |-> C ) )

Proof

Step Hyp Ref Expression
1 mpteq2dva.1
 |-  ( ( ph /\ x e. A ) -> B = C )
2 nfv
 |-  F/ x ph
3 2 1 mpteq2da
 |-  ( ph -> ( x e. A |-> B ) = ( x e. A |-> C ) )