Metamath Proof Explorer


Theorem mpteq2ia

Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013)

Ref Expression
Hypothesis mpteq2ia.1
|- ( x e. A -> B = C )
Assertion mpteq2ia
|- ( x e. A |-> B ) = ( x e. A |-> C )

Proof

Step Hyp Ref Expression
1 mpteq2ia.1
 |-  ( x e. A -> B = C )
2 eqid
 |-  A = A
3 2 ax-gen
 |-  A. x A = A
4 1 rgen
 |-  A. x e. A B = C
5 mpteq12f
 |-  ( ( A. x A = A /\ A. x e. A B = C ) -> ( x e. A |-> B ) = ( x e. A |-> C ) )
6 3 4 5 mp2an
 |-  ( x e. A |-> B ) = ( x e. A |-> C )