Metamath Proof Explorer


Theorem mptexg

Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion mptexg
|- ( A e. V -> ( x e. A |-> B ) e. _V )

Proof

Step Hyp Ref Expression
1 funmpt
 |-  Fun ( x e. A |-> B )
2 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
3 2 dmmptss
 |-  dom ( x e. A |-> B ) C_ A
4 ssexg
 |-  ( ( dom ( x e. A |-> B ) C_ A /\ A e. V ) -> dom ( x e. A |-> B ) e. _V )
5 3 4 mpan
 |-  ( A e. V -> dom ( x e. A |-> B ) e. _V )
6 funex
 |-  ( ( Fun ( x e. A |-> B ) /\ dom ( x e. A |-> B ) e. _V ) -> ( x e. A |-> B ) e. _V )
7 1 5 6 sylancr
 |-  ( A e. V -> ( x e. A |-> B ) e. _V )