Metamath Proof Explorer


Theorem mptfi

Description: A finite mapping set is finite. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion mptfi
|- ( A e. Fin -> ( x e. A |-> B ) e. Fin )

Proof

Step Hyp Ref Expression
1 funmpt
 |-  Fun ( x e. A |-> B )
2 funfn
 |-  ( Fun ( x e. A |-> B ) <-> ( x e. A |-> B ) Fn dom ( x e. A |-> B ) )
3 1 2 mpbi
 |-  ( x e. A |-> B ) Fn dom ( x e. A |-> B )
4 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
5 4 dmmptss
 |-  dom ( x e. A |-> B ) C_ A
6 ssfi
 |-  ( ( A e. Fin /\ dom ( x e. A |-> B ) C_ A ) -> dom ( x e. A |-> B ) e. Fin )
7 5 6 mpan2
 |-  ( A e. Fin -> dom ( x e. A |-> B ) e. Fin )
8 fnfi
 |-  ( ( ( x e. A |-> B ) Fn dom ( x e. A |-> B ) /\ dom ( x e. A |-> B ) e. Fin ) -> ( x e. A |-> B ) e. Fin )
9 3 7 8 sylancr
 |-  ( A e. Fin -> ( x e. A |-> B ) e. Fin )