Metamath Proof Explorer


Theorem mptfnd

Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013) (Revised by Thierry Arnoux, 10-May-2017)

Ref Expression
Hypotheses mptfnd.1
|- F/_ x A
mptfnd.2
|- F/ x ph
mptfnd.3
|- ( ( ph /\ x e. A ) -> B e. V )
Assertion mptfnd
|- ( ph -> ( x e. A |-> B ) Fn A )

Proof

Step Hyp Ref Expression
1 mptfnd.1
 |-  F/_ x A
2 mptfnd.2
 |-  F/ x ph
3 mptfnd.3
 |-  ( ( ph /\ x e. A ) -> B e. V )
4 3 ex
 |-  ( ph -> ( x e. A -> B e. V ) )
5 elex
 |-  ( B e. V -> B e. _V )
6 4 5 syl6
 |-  ( ph -> ( x e. A -> B e. _V ) )
7 2 6 ralrimi
 |-  ( ph -> A. x e. A B e. _V )
8 1 mptfnf
 |-  ( A. x e. A B e. _V <-> ( x e. A |-> B ) Fn A )
9 7 8 sylib
 |-  ( ph -> ( x e. A |-> B ) Fn A )