| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mptfzshft.1 |
|- ( ph -> K e. ZZ ) |
| 2 |
|
mptfzshft.2 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
mptfzshft.3 |
|- ( ph -> N e. ZZ ) |
| 4 |
|
ovex |
|- ( j - K ) e. _V |
| 5 |
|
eqid |
|- ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) = ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) |
| 6 |
4 5
|
fnmpti |
|- ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) Fn ( ( M + K ) ... ( N + K ) ) |
| 7 |
6
|
a1i |
|- ( ph -> ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) Fn ( ( M + K ) ... ( N + K ) ) ) |
| 8 |
|
ovex |
|- ( k + K ) e. _V |
| 9 |
|
eqid |
|- ( k e. ( M ... N ) |-> ( k + K ) ) = ( k e. ( M ... N ) |-> ( k + K ) ) |
| 10 |
8 9
|
fnmpti |
|- ( k e. ( M ... N ) |-> ( k + K ) ) Fn ( M ... N ) |
| 11 |
|
simprr |
|- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> k = ( j - K ) ) |
| 12 |
11
|
oveq1d |
|- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> ( k + K ) = ( ( j - K ) + K ) ) |
| 13 |
|
elfzelz |
|- ( j e. ( ( M + K ) ... ( N + K ) ) -> j e. ZZ ) |
| 14 |
13
|
ad2antrl |
|- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> j e. ZZ ) |
| 15 |
1
|
adantr |
|- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> K e. ZZ ) |
| 16 |
|
zcn |
|- ( j e. ZZ -> j e. CC ) |
| 17 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
| 18 |
|
npcan |
|- ( ( j e. CC /\ K e. CC ) -> ( ( j - K ) + K ) = j ) |
| 19 |
16 17 18
|
syl2an |
|- ( ( j e. ZZ /\ K e. ZZ ) -> ( ( j - K ) + K ) = j ) |
| 20 |
14 15 19
|
syl2anc |
|- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> ( ( j - K ) + K ) = j ) |
| 21 |
12 20
|
eqtr2d |
|- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> j = ( k + K ) ) |
| 22 |
|
simprl |
|- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> j e. ( ( M + K ) ... ( N + K ) ) ) |
| 23 |
21 22
|
eqeltrrd |
|- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> ( k + K ) e. ( ( M + K ) ... ( N + K ) ) ) |
| 24 |
2
|
adantr |
|- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> M e. ZZ ) |
| 25 |
3
|
adantr |
|- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> N e. ZZ ) |
| 26 |
14 15
|
zsubcld |
|- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> ( j - K ) e. ZZ ) |
| 27 |
11 26
|
eqeltrd |
|- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> k e. ZZ ) |
| 28 |
|
fzaddel |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( k e. ZZ /\ K e. ZZ ) ) -> ( k e. ( M ... N ) <-> ( k + K ) e. ( ( M + K ) ... ( N + K ) ) ) ) |
| 29 |
24 25 27 15 28
|
syl22anc |
|- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> ( k e. ( M ... N ) <-> ( k + K ) e. ( ( M + K ) ... ( N + K ) ) ) ) |
| 30 |
23 29
|
mpbird |
|- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> k e. ( M ... N ) ) |
| 31 |
30 21
|
jca |
|- ( ( ph /\ ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) -> ( k e. ( M ... N ) /\ j = ( k + K ) ) ) |
| 32 |
|
simprr |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> j = ( k + K ) ) |
| 33 |
|
simprl |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> k e. ( M ... N ) ) |
| 34 |
2
|
adantr |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> M e. ZZ ) |
| 35 |
3
|
adantr |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> N e. ZZ ) |
| 36 |
|
elfzelz |
|- ( k e. ( M ... N ) -> k e. ZZ ) |
| 37 |
36
|
ad2antrl |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> k e. ZZ ) |
| 38 |
1
|
adantr |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> K e. ZZ ) |
| 39 |
34 35 37 38 28
|
syl22anc |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> ( k e. ( M ... N ) <-> ( k + K ) e. ( ( M + K ) ... ( N + K ) ) ) ) |
| 40 |
33 39
|
mpbid |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> ( k + K ) e. ( ( M + K ) ... ( N + K ) ) ) |
| 41 |
32 40
|
eqeltrd |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> j e. ( ( M + K ) ... ( N + K ) ) ) |
| 42 |
32
|
oveq1d |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> ( j - K ) = ( ( k + K ) - K ) ) |
| 43 |
|
zcn |
|- ( k e. ZZ -> k e. CC ) |
| 44 |
|
pncan |
|- ( ( k e. CC /\ K e. CC ) -> ( ( k + K ) - K ) = k ) |
| 45 |
43 17 44
|
syl2an |
|- ( ( k e. ZZ /\ K e. ZZ ) -> ( ( k + K ) - K ) = k ) |
| 46 |
37 38 45
|
syl2anc |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> ( ( k + K ) - K ) = k ) |
| 47 |
42 46
|
eqtr2d |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> k = ( j - K ) ) |
| 48 |
41 47
|
jca |
|- ( ( ph /\ ( k e. ( M ... N ) /\ j = ( k + K ) ) ) -> ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) ) |
| 49 |
31 48
|
impbida |
|- ( ph -> ( ( j e. ( ( M + K ) ... ( N + K ) ) /\ k = ( j - K ) ) <-> ( k e. ( M ... N ) /\ j = ( k + K ) ) ) ) |
| 50 |
49
|
mptcnv |
|- ( ph -> `' ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) = ( k e. ( M ... N ) |-> ( k + K ) ) ) |
| 51 |
50
|
fneq1d |
|- ( ph -> ( `' ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) Fn ( M ... N ) <-> ( k e. ( M ... N ) |-> ( k + K ) ) Fn ( M ... N ) ) ) |
| 52 |
10 51
|
mpbiri |
|- ( ph -> `' ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) Fn ( M ... N ) ) |
| 53 |
|
dff1o4 |
|- ( ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) : ( ( M + K ) ... ( N + K ) ) -1-1-onto-> ( M ... N ) <-> ( ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) Fn ( ( M + K ) ... ( N + K ) ) /\ `' ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) Fn ( M ... N ) ) ) |
| 54 |
7 52 53
|
sylanbrc |
|- ( ph -> ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) : ( ( M + K ) ... ( N + K ) ) -1-1-onto-> ( M ... N ) ) |