Metamath Proof Explorer


Theorem mptima

Description: Image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Assertion mptima
|- ( ( x e. A |-> B ) " C ) = ran ( x e. ( A i^i C ) |-> B )

Proof

Step Hyp Ref Expression
1 df-ima
 |-  ( ( x e. A |-> B ) " C ) = ran ( ( x e. A |-> B ) |` C )
2 resmpt3
 |-  ( ( x e. A |-> B ) |` C ) = ( x e. ( A i^i C ) |-> B )
3 2 rneqi
 |-  ran ( ( x e. A |-> B ) |` C ) = ran ( x e. ( A i^i C ) |-> B )
4 1 3 eqtri
 |-  ( ( x e. A |-> B ) " C ) = ran ( x e. ( A i^i C ) |-> B )