Description: Image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mptima2.1 | |- ( ph -> C C_ A ) |
|
Assertion | mptima2 | |- ( ph -> ( ( x e. A |-> B ) " C ) = ran ( x e. C |-> B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptima2.1 | |- ( ph -> C C_ A ) |
|
2 | mptima | |- ( ( x e. A |-> B ) " C ) = ran ( x e. ( A i^i C ) |-> B ) |
|
3 | sseqin2 | |- ( C C_ A <-> ( A i^i C ) = C ) |
|
4 | 1 3 | sylib | |- ( ph -> ( A i^i C ) = C ) |
5 | 4 | mpteq1d | |- ( ph -> ( x e. ( A i^i C ) |-> B ) = ( x e. C |-> B ) ) |
6 | 5 | rneqd | |- ( ph -> ran ( x e. ( A i^i C ) |-> B ) = ran ( x e. C |-> B ) ) |
7 | 2 6 | syl5eq | |- ( ph -> ( ( x e. A |-> B ) " C ) = ran ( x e. C |-> B ) ) |