Step |
Hyp |
Ref |
Expression |
1 |
|
mptmpoopabbrd.g |
|- ( ph -> G e. W ) |
2 |
|
mptmpoopabbrd.x |
|- ( ph -> X e. ( A ` G ) ) |
3 |
|
mptmpoopabbrd.y |
|- ( ph -> Y e. ( B ` G ) ) |
4 |
|
mptmpoopabbrd.v |
|- ( ph -> { <. f , h >. | ps } e. V ) |
5 |
|
mptmpoopabbrd.r |
|- ( ( ph /\ f ( D ` G ) h ) -> ps ) |
6 |
|
mptmpoopabbrd.1 |
|- ( ( a = X /\ b = Y ) -> ( ta <-> th ) ) |
7 |
|
mptmpoopabbrd.2 |
|- ( g = G -> ( ch <-> ta ) ) |
8 |
|
mptmpoopabbrd.m |
|- M = ( g e. _V |-> ( a e. ( A ` g ) , b e. ( B ` g ) |-> { <. f , h >. | ( ch /\ f ( D ` g ) h ) } ) ) |
9 |
|
fveq2 |
|- ( g = G -> ( A ` g ) = ( A ` G ) ) |
10 |
|
fveq2 |
|- ( g = G -> ( B ` g ) = ( B ` G ) ) |
11 |
|
fveq2 |
|- ( g = G -> ( D ` g ) = ( D ` G ) ) |
12 |
11
|
breqd |
|- ( g = G -> ( f ( D ` g ) h <-> f ( D ` G ) h ) ) |
13 |
7 12
|
anbi12d |
|- ( g = G -> ( ( ch /\ f ( D ` g ) h ) <-> ( ta /\ f ( D ` G ) h ) ) ) |
14 |
13
|
opabbidv |
|- ( g = G -> { <. f , h >. | ( ch /\ f ( D ` g ) h ) } = { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) |
15 |
9 10 14
|
mpoeq123dv |
|- ( g = G -> ( a e. ( A ` g ) , b e. ( B ` g ) |-> { <. f , h >. | ( ch /\ f ( D ` g ) h ) } ) = ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) ) |
16 |
|
elex |
|- ( G e. W -> G e. _V ) |
17 |
16
|
adantr |
|- ( ( G e. W /\ G e. W ) -> G e. _V ) |
18 |
|
fvex |
|- ( A ` G ) e. _V |
19 |
|
fvex |
|- ( B ` G ) e. _V |
20 |
18 19
|
pm3.2i |
|- ( ( A ` G ) e. _V /\ ( B ` G ) e. _V ) |
21 |
|
mpoexga |
|- ( ( ( A ` G ) e. _V /\ ( B ` G ) e. _V ) -> ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) e. _V ) |
22 |
20 21
|
mp1i |
|- ( ( G e. W /\ G e. W ) -> ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) e. _V ) |
23 |
8 15 17 22
|
fvmptd3 |
|- ( ( G e. W /\ G e. W ) -> ( M ` G ) = ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) ) |
24 |
1 1 23
|
syl2anc |
|- ( ph -> ( M ` G ) = ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) ) |
25 |
24
|
oveqd |
|- ( ph -> ( X ( M ` G ) Y ) = ( X ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) Y ) ) |
26 |
|
ancom |
|- ( ( th /\ f ( D ` G ) h ) <-> ( f ( D ` G ) h /\ th ) ) |
27 |
26
|
opabbii |
|- { <. f , h >. | ( th /\ f ( D ` G ) h ) } = { <. f , h >. | ( f ( D ` G ) h /\ th ) } |
28 |
5 4
|
opabresex2d |
|- ( ph -> { <. f , h >. | ( f ( D ` G ) h /\ th ) } e. _V ) |
29 |
27 28
|
eqeltrid |
|- ( ph -> { <. f , h >. | ( th /\ f ( D ` G ) h ) } e. _V ) |
30 |
6
|
anbi1d |
|- ( ( a = X /\ b = Y ) -> ( ( ta /\ f ( D ` G ) h ) <-> ( th /\ f ( D ` G ) h ) ) ) |
31 |
30
|
opabbidv |
|- ( ( a = X /\ b = Y ) -> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } = { <. f , h >. | ( th /\ f ( D ` G ) h ) } ) |
32 |
|
eqid |
|- ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) = ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) |
33 |
31 32
|
ovmpoga |
|- ( ( X e. ( A ` G ) /\ Y e. ( B ` G ) /\ { <. f , h >. | ( th /\ f ( D ` G ) h ) } e. _V ) -> ( X ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) Y ) = { <. f , h >. | ( th /\ f ( D ` G ) h ) } ) |
34 |
2 3 29 33
|
syl3anc |
|- ( ph -> ( X ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) Y ) = { <. f , h >. | ( th /\ f ( D ` G ) h ) } ) |
35 |
25 34
|
eqtrd |
|- ( ph -> ( X ( M ` G ) Y ) = { <. f , h >. | ( th /\ f ( D ` G ) h ) } ) |