| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mptmpoopabbrdOLD.g |  |-  ( ph -> G e. W ) | 
						
							| 2 |  | mptmpoopabbrdOLD.x |  |-  ( ph -> X e. ( A ` G ) ) | 
						
							| 3 |  | mptmpoopabbrdOLD.y |  |-  ( ph -> Y e. ( B ` G ) ) | 
						
							| 4 |  | mptmpoopabbrdOLD.v |  |-  ( ph -> { <. f , h >. | ps } e. V ) | 
						
							| 5 |  | mptmpoopabbrdOLD.r |  |-  ( ( ph /\ f ( D ` G ) h ) -> ps ) | 
						
							| 6 |  | mptmpoopabbrdOLD.1 |  |-  ( ( a = X /\ b = Y ) -> ( ta <-> th ) ) | 
						
							| 7 |  | mptmpoopabbrdOLD.2 |  |-  ( g = G -> ( ch <-> ta ) ) | 
						
							| 8 |  | mptmpoopabbrdOLD.m |  |-  M = ( g e. _V |-> ( a e. ( A ` g ) , b e. ( B ` g ) |-> { <. f , h >. | ( ch /\ f ( D ` g ) h ) } ) ) | 
						
							| 9 |  | fveq2 |  |-  ( g = G -> ( A ` g ) = ( A ` G ) ) | 
						
							| 10 |  | fveq2 |  |-  ( g = G -> ( B ` g ) = ( B ` G ) ) | 
						
							| 11 |  | fveq2 |  |-  ( g = G -> ( D ` g ) = ( D ` G ) ) | 
						
							| 12 | 11 | breqd |  |-  ( g = G -> ( f ( D ` g ) h <-> f ( D ` G ) h ) ) | 
						
							| 13 | 7 12 | anbi12d |  |-  ( g = G -> ( ( ch /\ f ( D ` g ) h ) <-> ( ta /\ f ( D ` G ) h ) ) ) | 
						
							| 14 | 13 | opabbidv |  |-  ( g = G -> { <. f , h >. | ( ch /\ f ( D ` g ) h ) } = { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) | 
						
							| 15 | 9 10 14 | mpoeq123dv |  |-  ( g = G -> ( a e. ( A ` g ) , b e. ( B ` g ) |-> { <. f , h >. | ( ch /\ f ( D ` g ) h ) } ) = ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) ) | 
						
							| 16 |  | elex |  |-  ( G e. W -> G e. _V ) | 
						
							| 17 | 16 | adantr |  |-  ( ( G e. W /\ G e. W ) -> G e. _V ) | 
						
							| 18 |  | fvex |  |-  ( A ` G ) e. _V | 
						
							| 19 |  | fvex |  |-  ( B ` G ) e. _V | 
						
							| 20 | 18 19 | pm3.2i |  |-  ( ( A ` G ) e. _V /\ ( B ` G ) e. _V ) | 
						
							| 21 |  | mpoexga |  |-  ( ( ( A ` G ) e. _V /\ ( B ` G ) e. _V ) -> ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) e. _V ) | 
						
							| 22 | 20 21 | mp1i |  |-  ( ( G e. W /\ G e. W ) -> ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) e. _V ) | 
						
							| 23 | 8 15 17 22 | fvmptd3 |  |-  ( ( G e. W /\ G e. W ) -> ( M ` G ) = ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) ) | 
						
							| 24 | 1 1 23 | syl2anc |  |-  ( ph -> ( M ` G ) = ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) ) | 
						
							| 25 | 24 | oveqd |  |-  ( ph -> ( X ( M ` G ) Y ) = ( X ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) Y ) ) | 
						
							| 26 |  | ancom |  |-  ( ( th /\ f ( D ` G ) h ) <-> ( f ( D ` G ) h /\ th ) ) | 
						
							| 27 | 26 | opabbii |  |-  { <. f , h >. | ( th /\ f ( D ` G ) h ) } = { <. f , h >. | ( f ( D ` G ) h /\ th ) } | 
						
							| 28 | 5 4 | opabresex2d |  |-  ( ph -> { <. f , h >. | ( f ( D ` G ) h /\ th ) } e. _V ) | 
						
							| 29 | 27 28 | eqeltrid |  |-  ( ph -> { <. f , h >. | ( th /\ f ( D ` G ) h ) } e. _V ) | 
						
							| 30 | 6 | anbi1d |  |-  ( ( a = X /\ b = Y ) -> ( ( ta /\ f ( D ` G ) h ) <-> ( th /\ f ( D ` G ) h ) ) ) | 
						
							| 31 | 30 | opabbidv |  |-  ( ( a = X /\ b = Y ) -> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } = { <. f , h >. | ( th /\ f ( D ` G ) h ) } ) | 
						
							| 32 |  | eqid |  |-  ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) = ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) | 
						
							| 33 | 31 32 | ovmpoga |  |-  ( ( X e. ( A ` G ) /\ Y e. ( B ` G ) /\ { <. f , h >. | ( th /\ f ( D ` G ) h ) } e. _V ) -> ( X ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) Y ) = { <. f , h >. | ( th /\ f ( D ` G ) h ) } ) | 
						
							| 34 | 2 3 29 33 | syl3anc |  |-  ( ph -> ( X ( a e. ( A ` G ) , b e. ( B ` G ) |-> { <. f , h >. | ( ta /\ f ( D ` G ) h ) } ) Y ) = { <. f , h >. | ( th /\ f ( D ` G ) h ) } ) | 
						
							| 35 | 25 34 | eqtrd |  |-  ( ph -> ( X ( M ` G ) Y ) = { <. f , h >. | ( th /\ f ( D ` G ) h ) } ) |