| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mptmpoopabbrdOLD.g |  |-  ( ph -> G e. W ) | 
						
							| 2 |  | mptmpoopabbrdOLD.x |  |-  ( ph -> X e. ( A ` G ) ) | 
						
							| 3 |  | mptmpoopabbrdOLD.y |  |-  ( ph -> Y e. ( B ` G ) ) | 
						
							| 4 |  | mptmpoopabbrdOLD.v |  |-  ( ph -> { <. f , h >. | ps } e. V ) | 
						
							| 5 |  | mptmpoopabbrdOLD.r |  |-  ( ( ph /\ f ( D ` G ) h ) -> ps ) | 
						
							| 6 |  | mptmpoopabovdOLD.m |  |-  M = ( g e. _V |-> ( a e. ( A ` g ) , b e. ( B ` g ) |-> { <. f , h >. | ( f ( a ( C ` g ) b ) h /\ f ( D ` g ) h ) } ) ) | 
						
							| 7 |  | oveq12 |  |-  ( ( a = X /\ b = Y ) -> ( a ( C ` G ) b ) = ( X ( C ` G ) Y ) ) | 
						
							| 8 | 7 | breqd |  |-  ( ( a = X /\ b = Y ) -> ( f ( a ( C ` G ) b ) h <-> f ( X ( C ` G ) Y ) h ) ) | 
						
							| 9 |  | fveq2 |  |-  ( g = G -> ( C ` g ) = ( C ` G ) ) | 
						
							| 10 | 9 | oveqd |  |-  ( g = G -> ( a ( C ` g ) b ) = ( a ( C ` G ) b ) ) | 
						
							| 11 | 10 | breqd |  |-  ( g = G -> ( f ( a ( C ` g ) b ) h <-> f ( a ( C ` G ) b ) h ) ) | 
						
							| 12 | 1 2 3 4 5 8 11 6 | mptmpoopabbrdOLDOLD |  |-  ( ph -> ( X ( M ` G ) Y ) = { <. f , h >. | ( f ( X ( C ` G ) Y ) h /\ f ( D ` G ) h ) } ) |