Step |
Hyp |
Ref |
Expression |
1 |
|
mptnn0fsupp.0 |
|- ( ph -> .0. e. V ) |
2 |
|
mptnn0fsupp.c |
|- ( ( ph /\ k e. NN0 ) -> C e. B ) |
3 |
|
mptnn0fsupp.s |
|- ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |
4 |
2
|
ralrimiva |
|- ( ph -> A. k e. NN0 C e. B ) |
5 |
|
eqid |
|- ( k e. NN0 |-> C ) = ( k e. NN0 |-> C ) |
6 |
5
|
fnmpt |
|- ( A. k e. NN0 C e. B -> ( k e. NN0 |-> C ) Fn NN0 ) |
7 |
4 6
|
syl |
|- ( ph -> ( k e. NN0 |-> C ) Fn NN0 ) |
8 |
|
nn0ex |
|- NN0 e. _V |
9 |
8
|
a1i |
|- ( ph -> NN0 e. _V ) |
10 |
1
|
elexd |
|- ( ph -> .0. e. _V ) |
11 |
|
suppvalfn |
|- ( ( ( k e. NN0 |-> C ) Fn NN0 /\ NN0 e. _V /\ .0. e. _V ) -> ( ( k e. NN0 |-> C ) supp .0. ) = { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } ) |
12 |
7 9 10 11
|
syl3anc |
|- ( ph -> ( ( k e. NN0 |-> C ) supp .0. ) = { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } ) |
13 |
|
nne |
|- ( -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. <-> ( ( k e. NN0 |-> C ) ` x ) = .0. ) |
14 |
|
simpr |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> x e. NN0 ) |
15 |
4
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> A. k e. NN0 C e. B ) |
16 |
|
rspcsbela |
|- ( ( x e. NN0 /\ A. k e. NN0 C e. B ) -> [_ x / k ]_ C e. B ) |
17 |
14 15 16
|
syl2anc |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> [_ x / k ]_ C e. B ) |
18 |
5
|
fvmpts |
|- ( ( x e. NN0 /\ [_ x / k ]_ C e. B ) -> ( ( k e. NN0 |-> C ) ` x ) = [_ x / k ]_ C ) |
19 |
14 17 18
|
syl2anc |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( k e. NN0 |-> C ) ` x ) = [_ x / k ]_ C ) |
20 |
19
|
eqeq1d |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( ( k e. NN0 |-> C ) ` x ) = .0. <-> [_ x / k ]_ C = .0. ) ) |
21 |
13 20
|
syl5bb |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. <-> [_ x / k ]_ C = .0. ) ) |
22 |
21
|
imbi2d |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( s < x -> -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. ) <-> ( s < x -> [_ x / k ]_ C = .0. ) ) ) |
23 |
22
|
ralbidva |
|- ( ( ph /\ s e. NN0 ) -> ( A. x e. NN0 ( s < x -> -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. ) <-> A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) ) |
24 |
23
|
rexbidva |
|- ( ph -> ( E. s e. NN0 A. x e. NN0 ( s < x -> -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. ) <-> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) ) |
25 |
3 24
|
mpbird |
|- ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. ) ) |
26 |
|
rabssnn0fi |
|- ( { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } e. Fin <-> E. s e. NN0 A. x e. NN0 ( s < x -> -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. ) ) |
27 |
25 26
|
sylibr |
|- ( ph -> { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } e. Fin ) |
28 |
12 27
|
eqeltrd |
|- ( ph -> ( ( k e. NN0 |-> C ) supp .0. ) e. Fin ) |
29 |
|
funmpt |
|- Fun ( k e. NN0 |-> C ) |
30 |
8
|
mptex |
|- ( k e. NN0 |-> C ) e. _V |
31 |
|
funisfsupp |
|- ( ( Fun ( k e. NN0 |-> C ) /\ ( k e. NN0 |-> C ) e. _V /\ .0. e. _V ) -> ( ( k e. NN0 |-> C ) finSupp .0. <-> ( ( k e. NN0 |-> C ) supp .0. ) e. Fin ) ) |
32 |
29 30 10 31
|
mp3an12i |
|- ( ph -> ( ( k e. NN0 |-> C ) finSupp .0. <-> ( ( k e. NN0 |-> C ) supp .0. ) e. Fin ) ) |
33 |
28 32
|
mpbird |
|- ( ph -> ( k e. NN0 |-> C ) finSupp .0. ) |