| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mptnn0fsupp.0 |  |-  ( ph -> .0. e. V ) | 
						
							| 2 |  | mptnn0fsupp.c |  |-  ( ( ph /\ k e. NN0 ) -> C e. B ) | 
						
							| 3 |  | mptnn0fsupp.s |  |-  ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) | 
						
							| 4 | 2 | ralrimiva |  |-  ( ph -> A. k e. NN0 C e. B ) | 
						
							| 5 |  | eqid |  |-  ( k e. NN0 |-> C ) = ( k e. NN0 |-> C ) | 
						
							| 6 | 5 | fnmpt |  |-  ( A. k e. NN0 C e. B -> ( k e. NN0 |-> C ) Fn NN0 ) | 
						
							| 7 | 4 6 | syl |  |-  ( ph -> ( k e. NN0 |-> C ) Fn NN0 ) | 
						
							| 8 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 9 | 8 | a1i |  |-  ( ph -> NN0 e. _V ) | 
						
							| 10 | 1 | elexd |  |-  ( ph -> .0. e. _V ) | 
						
							| 11 |  | suppvalfn |  |-  ( ( ( k e. NN0 |-> C ) Fn NN0 /\ NN0 e. _V /\ .0. e. _V ) -> ( ( k e. NN0 |-> C ) supp .0. ) = { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } ) | 
						
							| 12 | 7 9 10 11 | syl3anc |  |-  ( ph -> ( ( k e. NN0 |-> C ) supp .0. ) = { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } ) | 
						
							| 13 |  | nne |  |-  ( -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. <-> ( ( k e. NN0 |-> C ) ` x ) = .0. ) | 
						
							| 14 |  | simpr |  |-  ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> x e. NN0 ) | 
						
							| 15 | 4 | ad2antrr |  |-  ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> A. k e. NN0 C e. B ) | 
						
							| 16 |  | rspcsbela |  |-  ( ( x e. NN0 /\ A. k e. NN0 C e. B ) -> [_ x / k ]_ C e. B ) | 
						
							| 17 | 14 15 16 | syl2anc |  |-  ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> [_ x / k ]_ C e. B ) | 
						
							| 18 | 5 | fvmpts |  |-  ( ( x e. NN0 /\ [_ x / k ]_ C e. B ) -> ( ( k e. NN0 |-> C ) ` x ) = [_ x / k ]_ C ) | 
						
							| 19 | 14 17 18 | syl2anc |  |-  ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( k e. NN0 |-> C ) ` x ) = [_ x / k ]_ C ) | 
						
							| 20 | 19 | eqeq1d |  |-  ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( ( k e. NN0 |-> C ) ` x ) = .0. <-> [_ x / k ]_ C = .0. ) ) | 
						
							| 21 | 13 20 | bitrid |  |-  ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. <-> [_ x / k ]_ C = .0. ) ) | 
						
							| 22 | 21 | imbi2d |  |-  ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( s < x -> -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. ) <-> ( s < x -> [_ x / k ]_ C = .0. ) ) ) | 
						
							| 23 | 22 | ralbidva |  |-  ( ( ph /\ s e. NN0 ) -> ( A. x e. NN0 ( s < x -> -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. ) <-> A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) ) | 
						
							| 24 | 23 | rexbidva |  |-  ( ph -> ( E. s e. NN0 A. x e. NN0 ( s < x -> -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. ) <-> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) ) | 
						
							| 25 | 3 24 | mpbird |  |-  ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. ) ) | 
						
							| 26 |  | rabssnn0fi |  |-  ( { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } e. Fin <-> E. s e. NN0 A. x e. NN0 ( s < x -> -. ( ( k e. NN0 |-> C ) ` x ) =/= .0. ) ) | 
						
							| 27 | 25 26 | sylibr |  |-  ( ph -> { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } e. Fin ) | 
						
							| 28 | 12 27 | eqeltrd |  |-  ( ph -> ( ( k e. NN0 |-> C ) supp .0. ) e. Fin ) | 
						
							| 29 |  | funmpt |  |-  Fun ( k e. NN0 |-> C ) | 
						
							| 30 | 8 | mptex |  |-  ( k e. NN0 |-> C ) e. _V | 
						
							| 31 |  | funisfsupp |  |-  ( ( Fun ( k e. NN0 |-> C ) /\ ( k e. NN0 |-> C ) e. _V /\ .0. e. _V ) -> ( ( k e. NN0 |-> C ) finSupp .0. <-> ( ( k e. NN0 |-> C ) supp .0. ) e. Fin ) ) | 
						
							| 32 | 29 30 10 31 | mp3an12i |  |-  ( ph -> ( ( k e. NN0 |-> C ) finSupp .0. <-> ( ( k e. NN0 |-> C ) supp .0. ) e. Fin ) ) | 
						
							| 33 | 28 32 | mpbird |  |-  ( ph -> ( k e. NN0 |-> C ) finSupp .0. ) |