| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mptnn0fsupp.0 |  |-  ( ph -> .0. e. V ) | 
						
							| 2 |  | mptnn0fsupp.c |  |-  ( ( ph /\ k e. NN0 ) -> C e. B ) | 
						
							| 3 |  | mptnn0fsuppd.d |  |-  ( k = x -> C = D ) | 
						
							| 4 |  | mptnn0fsuppd.s |  |-  ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> D = .0. ) ) | 
						
							| 5 |  | vex |  |-  x e. _V | 
						
							| 6 | 5 3 | csbie |  |-  [_ x / k ]_ C = D | 
						
							| 7 |  | id |  |-  ( D = .0. -> D = .0. ) | 
						
							| 8 | 6 7 | eqtrid |  |-  ( D = .0. -> [_ x / k ]_ C = .0. ) | 
						
							| 9 | 8 | imim2i |  |-  ( ( s < x -> D = .0. ) -> ( s < x -> [_ x / k ]_ C = .0. ) ) | 
						
							| 10 | 9 | ralimi |  |-  ( A. x e. NN0 ( s < x -> D = .0. ) -> A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) | 
						
							| 11 | 10 | reximi |  |-  ( E. s e. NN0 A. x e. NN0 ( s < x -> D = .0. ) -> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) | 
						
							| 12 | 4 11 | syl |  |-  ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) | 
						
							| 13 | 1 2 12 | mptnn0fsupp |  |-  ( ph -> ( k e. NN0 |-> C ) finSupp .0. ) |