| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mptnn0fsupp.0 |  |-  ( ph -> .0. e. V ) | 
						
							| 2 |  | mptnn0fsupp.c |  |-  ( ( ph /\ k e. NN0 ) -> C e. B ) | 
						
							| 3 |  | mptnn0fsuppr.s |  |-  ( ph -> ( k e. NN0 |-> C ) finSupp .0. ) | 
						
							| 4 |  | fsuppimp |  |-  ( ( k e. NN0 |-> C ) finSupp .0. -> ( Fun ( k e. NN0 |-> C ) /\ ( ( k e. NN0 |-> C ) supp .0. ) e. Fin ) ) | 
						
							| 5 | 2 | ralrimiva |  |-  ( ph -> A. k e. NN0 C e. B ) | 
						
							| 6 |  | eqid |  |-  ( k e. NN0 |-> C ) = ( k e. NN0 |-> C ) | 
						
							| 7 | 6 | fnmpt |  |-  ( A. k e. NN0 C e. B -> ( k e. NN0 |-> C ) Fn NN0 ) | 
						
							| 8 | 5 7 | syl |  |-  ( ph -> ( k e. NN0 |-> C ) Fn NN0 ) | 
						
							| 9 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 10 | 9 | a1i |  |-  ( ph -> NN0 e. _V ) | 
						
							| 11 | 1 | elexd |  |-  ( ph -> .0. e. _V ) | 
						
							| 12 | 8 10 11 | 3jca |  |-  ( ph -> ( ( k e. NN0 |-> C ) Fn NN0 /\ NN0 e. _V /\ .0. e. _V ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> ( ( k e. NN0 |-> C ) Fn NN0 /\ NN0 e. _V /\ .0. e. _V ) ) | 
						
							| 14 |  | suppvalfn |  |-  ( ( ( k e. NN0 |-> C ) Fn NN0 /\ NN0 e. _V /\ .0. e. _V ) -> ( ( k e. NN0 |-> C ) supp .0. ) = { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> ( ( k e. NN0 |-> C ) supp .0. ) = { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } ) | 
						
							| 16 |  | simpr |  |-  ( ( ( ph /\ Fun ( k e. NN0 |-> C ) ) /\ x e. NN0 ) -> x e. NN0 ) | 
						
							| 17 | 5 | adantr |  |-  ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> A. k e. NN0 C e. B ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ( ph /\ Fun ( k e. NN0 |-> C ) ) /\ x e. NN0 ) -> A. k e. NN0 C e. B ) | 
						
							| 19 |  | rspcsbela |  |-  ( ( x e. NN0 /\ A. k e. NN0 C e. B ) -> [_ x / k ]_ C e. B ) | 
						
							| 20 | 16 18 19 | syl2anc |  |-  ( ( ( ph /\ Fun ( k e. NN0 |-> C ) ) /\ x e. NN0 ) -> [_ x / k ]_ C e. B ) | 
						
							| 21 | 6 | fvmpts |  |-  ( ( x e. NN0 /\ [_ x / k ]_ C e. B ) -> ( ( k e. NN0 |-> C ) ` x ) = [_ x / k ]_ C ) | 
						
							| 22 | 16 20 21 | syl2anc |  |-  ( ( ( ph /\ Fun ( k e. NN0 |-> C ) ) /\ x e. NN0 ) -> ( ( k e. NN0 |-> C ) ` x ) = [_ x / k ]_ C ) | 
						
							| 23 | 22 | neeq1d |  |-  ( ( ( ph /\ Fun ( k e. NN0 |-> C ) ) /\ x e. NN0 ) -> ( ( ( k e. NN0 |-> C ) ` x ) =/= .0. <-> [_ x / k ]_ C =/= .0. ) ) | 
						
							| 24 | 23 | rabbidva |  |-  ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } = { x e. NN0 | [_ x / k ]_ C =/= .0. } ) | 
						
							| 25 | 15 24 | eqtrd |  |-  ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> ( ( k e. NN0 |-> C ) supp .0. ) = { x e. NN0 | [_ x / k ]_ C =/= .0. } ) | 
						
							| 26 | 25 | eleq1d |  |-  ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> ( ( ( k e. NN0 |-> C ) supp .0. ) e. Fin <-> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) | 
						
							| 27 | 26 | biimpd |  |-  ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> ( ( ( k e. NN0 |-> C ) supp .0. ) e. Fin -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) | 
						
							| 28 | 27 | expcom |  |-  ( Fun ( k e. NN0 |-> C ) -> ( ph -> ( ( ( k e. NN0 |-> C ) supp .0. ) e. Fin -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) ) | 
						
							| 29 | 28 | com23 |  |-  ( Fun ( k e. NN0 |-> C ) -> ( ( ( k e. NN0 |-> C ) supp .0. ) e. Fin -> ( ph -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) ) | 
						
							| 30 | 29 | imp |  |-  ( ( Fun ( k e. NN0 |-> C ) /\ ( ( k e. NN0 |-> C ) supp .0. ) e. Fin ) -> ( ph -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) | 
						
							| 31 | 4 30 | syl |  |-  ( ( k e. NN0 |-> C ) finSupp .0. -> ( ph -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) | 
						
							| 32 | 3 31 | mpcom |  |-  ( ph -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) | 
						
							| 33 |  | rabssnn0fi |  |-  ( { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin <-> E. s e. NN0 A. x e. NN0 ( s < x -> -. [_ x / k ]_ C =/= .0. ) ) | 
						
							| 34 |  | nne |  |-  ( -. [_ x / k ]_ C =/= .0. <-> [_ x / k ]_ C = .0. ) | 
						
							| 35 | 34 | imbi2i |  |-  ( ( s < x -> -. [_ x / k ]_ C =/= .0. ) <-> ( s < x -> [_ x / k ]_ C = .0. ) ) | 
						
							| 36 | 35 | ralbii |  |-  ( A. x e. NN0 ( s < x -> -. [_ x / k ]_ C =/= .0. ) <-> A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) | 
						
							| 37 | 36 | rexbii |  |-  ( E. s e. NN0 A. x e. NN0 ( s < x -> -. [_ x / k ]_ C =/= .0. ) <-> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) | 
						
							| 38 | 33 37 | bitri |  |-  ( { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin <-> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) | 
						
							| 39 | 32 38 | sylib |  |-  ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |