Step |
Hyp |
Ref |
Expression |
1 |
|
mptnn0fsupp.0 |
|- ( ph -> .0. e. V ) |
2 |
|
mptnn0fsupp.c |
|- ( ( ph /\ k e. NN0 ) -> C e. B ) |
3 |
|
mptnn0fsuppr.s |
|- ( ph -> ( k e. NN0 |-> C ) finSupp .0. ) |
4 |
|
fsuppimp |
|- ( ( k e. NN0 |-> C ) finSupp .0. -> ( Fun ( k e. NN0 |-> C ) /\ ( ( k e. NN0 |-> C ) supp .0. ) e. Fin ) ) |
5 |
2
|
ralrimiva |
|- ( ph -> A. k e. NN0 C e. B ) |
6 |
|
eqid |
|- ( k e. NN0 |-> C ) = ( k e. NN0 |-> C ) |
7 |
6
|
fnmpt |
|- ( A. k e. NN0 C e. B -> ( k e. NN0 |-> C ) Fn NN0 ) |
8 |
5 7
|
syl |
|- ( ph -> ( k e. NN0 |-> C ) Fn NN0 ) |
9 |
|
nn0ex |
|- NN0 e. _V |
10 |
9
|
a1i |
|- ( ph -> NN0 e. _V ) |
11 |
1
|
elexd |
|- ( ph -> .0. e. _V ) |
12 |
8 10 11
|
3jca |
|- ( ph -> ( ( k e. NN0 |-> C ) Fn NN0 /\ NN0 e. _V /\ .0. e. _V ) ) |
13 |
12
|
adantr |
|- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> ( ( k e. NN0 |-> C ) Fn NN0 /\ NN0 e. _V /\ .0. e. _V ) ) |
14 |
|
suppvalfn |
|- ( ( ( k e. NN0 |-> C ) Fn NN0 /\ NN0 e. _V /\ .0. e. _V ) -> ( ( k e. NN0 |-> C ) supp .0. ) = { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } ) |
15 |
13 14
|
syl |
|- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> ( ( k e. NN0 |-> C ) supp .0. ) = { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } ) |
16 |
|
simpr |
|- ( ( ( ph /\ Fun ( k e. NN0 |-> C ) ) /\ x e. NN0 ) -> x e. NN0 ) |
17 |
5
|
adantr |
|- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> A. k e. NN0 C e. B ) |
18 |
17
|
adantr |
|- ( ( ( ph /\ Fun ( k e. NN0 |-> C ) ) /\ x e. NN0 ) -> A. k e. NN0 C e. B ) |
19 |
|
rspcsbela |
|- ( ( x e. NN0 /\ A. k e. NN0 C e. B ) -> [_ x / k ]_ C e. B ) |
20 |
16 18 19
|
syl2anc |
|- ( ( ( ph /\ Fun ( k e. NN0 |-> C ) ) /\ x e. NN0 ) -> [_ x / k ]_ C e. B ) |
21 |
6
|
fvmpts |
|- ( ( x e. NN0 /\ [_ x / k ]_ C e. B ) -> ( ( k e. NN0 |-> C ) ` x ) = [_ x / k ]_ C ) |
22 |
16 20 21
|
syl2anc |
|- ( ( ( ph /\ Fun ( k e. NN0 |-> C ) ) /\ x e. NN0 ) -> ( ( k e. NN0 |-> C ) ` x ) = [_ x / k ]_ C ) |
23 |
22
|
neeq1d |
|- ( ( ( ph /\ Fun ( k e. NN0 |-> C ) ) /\ x e. NN0 ) -> ( ( ( k e. NN0 |-> C ) ` x ) =/= .0. <-> [_ x / k ]_ C =/= .0. ) ) |
24 |
23
|
rabbidva |
|- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } = { x e. NN0 | [_ x / k ]_ C =/= .0. } ) |
25 |
15 24
|
eqtrd |
|- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> ( ( k e. NN0 |-> C ) supp .0. ) = { x e. NN0 | [_ x / k ]_ C =/= .0. } ) |
26 |
25
|
eleq1d |
|- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> ( ( ( k e. NN0 |-> C ) supp .0. ) e. Fin <-> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) |
27 |
26
|
biimpd |
|- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> ( ( ( k e. NN0 |-> C ) supp .0. ) e. Fin -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) |
28 |
27
|
expcom |
|- ( Fun ( k e. NN0 |-> C ) -> ( ph -> ( ( ( k e. NN0 |-> C ) supp .0. ) e. Fin -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) ) |
29 |
28
|
com23 |
|- ( Fun ( k e. NN0 |-> C ) -> ( ( ( k e. NN0 |-> C ) supp .0. ) e. Fin -> ( ph -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) ) |
30 |
29
|
imp |
|- ( ( Fun ( k e. NN0 |-> C ) /\ ( ( k e. NN0 |-> C ) supp .0. ) e. Fin ) -> ( ph -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) |
31 |
4 30
|
syl |
|- ( ( k e. NN0 |-> C ) finSupp .0. -> ( ph -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) |
32 |
3 31
|
mpcom |
|- ( ph -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) |
33 |
|
rabssnn0fi |
|- ( { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin <-> E. s e. NN0 A. x e. NN0 ( s < x -> -. [_ x / k ]_ C =/= .0. ) ) |
34 |
|
nne |
|- ( -. [_ x / k ]_ C =/= .0. <-> [_ x / k ]_ C = .0. ) |
35 |
34
|
imbi2i |
|- ( ( s < x -> -. [_ x / k ]_ C =/= .0. ) <-> ( s < x -> [_ x / k ]_ C = .0. ) ) |
36 |
35
|
ralbii |
|- ( A. x e. NN0 ( s < x -> -. [_ x / k ]_ C =/= .0. ) <-> A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |
37 |
36
|
rexbii |
|- ( E. s e. NN0 A. x e. NN0 ( s < x -> -. [_ x / k ]_ C =/= .0. ) <-> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |
38 |
33 37
|
bitri |
|- ( { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin <-> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |
39 |
32 38
|
sylib |
|- ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |