Metamath Proof Explorer


Theorem mptrabex

Description: If the domain of a function given by maps-to notation is a class abstraction based on a set, the function is a set. (Contributed by AV, 16-Jul-2019) (Revised by AV, 26-Mar-2021)

Ref Expression
Hypothesis mptrabex.1
|- A e. _V
Assertion mptrabex
|- ( x e. { y e. A | ph } |-> B ) e. _V

Proof

Step Hyp Ref Expression
1 mptrabex.1
 |-  A e. _V
2 1 rabex
 |-  { y e. A | ph } e. _V
3 2 mptex
 |-  ( x e. { y e. A | ph } |-> B ) e. _V