Metamath Proof Explorer


Theorem mptrcl

Description: Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020)

Ref Expression
Hypothesis mptrcl.1
|- F = ( x e. A |-> B )
Assertion mptrcl
|- ( I e. ( F ` X ) -> X e. A )

Proof

Step Hyp Ref Expression
1 mptrcl.1
 |-  F = ( x e. A |-> B )
2 n0i
 |-  ( I e. ( F ` X ) -> -. ( F ` X ) = (/) )
3 1 dmmptss
 |-  dom F C_ A
4 3 sseli
 |-  ( X e. dom F -> X e. A )
5 ndmfv
 |-  ( -. X e. dom F -> ( F ` X ) = (/) )
6 4 5 nsyl4
 |-  ( -. ( F ` X ) = (/) -> X e. A )
7 2 6 syl
 |-  ( I e. ( F ` X ) -> X e. A )