Metamath Proof Explorer


Theorem mptresidOLD

Description: Obsolete version of mptresid as of 26-Dec-2023. (Contributed by FL, 25-Apr-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion mptresidOLD
|- ( x e. A |-> x ) = ( _I |` A )

Proof

Step Hyp Ref Expression
1 df-mpt
 |-  ( x e. A |-> x ) = { <. x , y >. | ( x e. A /\ y = x ) }
2 opabresidOLD
 |-  { <. x , y >. | ( x e. A /\ y = x ) } = ( _I |` A )
3 1 2 eqtri
 |-  ( x e. A |-> x ) = ( _I |` A )