| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mptscmfsupp0.d |  |-  ( ph -> D e. V ) | 
						
							| 2 |  | mptscmfsupp0.q |  |-  ( ph -> Q e. LMod ) | 
						
							| 3 |  | mptscmfsupp0.r |  |-  ( ph -> R = ( Scalar ` Q ) ) | 
						
							| 4 |  | mptscmfsupp0.k |  |-  K = ( Base ` Q ) | 
						
							| 5 |  | mptscmfsupp0.s |  |-  ( ( ph /\ k e. D ) -> S e. B ) | 
						
							| 6 |  | mptscmfsupp0.w |  |-  ( ( ph /\ k e. D ) -> W e. K ) | 
						
							| 7 |  | mptscmfsupp0.0 |  |-  .0. = ( 0g ` Q ) | 
						
							| 8 |  | mptscmfsupp0.z |  |-  Z = ( 0g ` R ) | 
						
							| 9 |  | mptscmfsupp0.m |  |-  .* = ( .s ` Q ) | 
						
							| 10 |  | mptscmfsupp0.f |  |-  ( ph -> ( k e. D |-> S ) finSupp Z ) | 
						
							| 11 | 1 | mptexd |  |-  ( ph -> ( k e. D |-> ( S .* W ) ) e. _V ) | 
						
							| 12 |  | funmpt |  |-  Fun ( k e. D |-> ( S .* W ) ) | 
						
							| 13 | 12 | a1i |  |-  ( ph -> Fun ( k e. D |-> ( S .* W ) ) ) | 
						
							| 14 | 7 | fvexi |  |-  .0. e. _V | 
						
							| 15 | 14 | a1i |  |-  ( ph -> .0. e. _V ) | 
						
							| 16 | 10 | fsuppimpd |  |-  ( ph -> ( ( k e. D |-> S ) supp Z ) e. Fin ) | 
						
							| 17 |  | simpr |  |-  ( ( ph /\ d e. D ) -> d e. D ) | 
						
							| 18 | 5 | ralrimiva |  |-  ( ph -> A. k e. D S e. B ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ d e. D ) -> A. k e. D S e. B ) | 
						
							| 20 |  | rspcsbela |  |-  ( ( d e. D /\ A. k e. D S e. B ) -> [_ d / k ]_ S e. B ) | 
						
							| 21 | 17 19 20 | syl2anc |  |-  ( ( ph /\ d e. D ) -> [_ d / k ]_ S e. B ) | 
						
							| 22 |  | eqid |  |-  ( k e. D |-> S ) = ( k e. D |-> S ) | 
						
							| 23 | 22 | fvmpts |  |-  ( ( d e. D /\ [_ d / k ]_ S e. B ) -> ( ( k e. D |-> S ) ` d ) = [_ d / k ]_ S ) | 
						
							| 24 | 17 21 23 | syl2anc |  |-  ( ( ph /\ d e. D ) -> ( ( k e. D |-> S ) ` d ) = [_ d / k ]_ S ) | 
						
							| 25 | 24 | eqeq1d |  |-  ( ( ph /\ d e. D ) -> ( ( ( k e. D |-> S ) ` d ) = Z <-> [_ d / k ]_ S = Z ) ) | 
						
							| 26 |  | oveq1 |  |-  ( [_ d / k ]_ S = Z -> ( [_ d / k ]_ S .* [_ d / k ]_ W ) = ( Z .* [_ d / k ]_ W ) ) | 
						
							| 27 | 3 | adantr |  |-  ( ( ph /\ d e. D ) -> R = ( Scalar ` Q ) ) | 
						
							| 28 | 27 | fveq2d |  |-  ( ( ph /\ d e. D ) -> ( 0g ` R ) = ( 0g ` ( Scalar ` Q ) ) ) | 
						
							| 29 | 8 28 | eqtrid |  |-  ( ( ph /\ d e. D ) -> Z = ( 0g ` ( Scalar ` Q ) ) ) | 
						
							| 30 | 29 | oveq1d |  |-  ( ( ph /\ d e. D ) -> ( Z .* [_ d / k ]_ W ) = ( ( 0g ` ( Scalar ` Q ) ) .* [_ d / k ]_ W ) ) | 
						
							| 31 | 2 | adantr |  |-  ( ( ph /\ d e. D ) -> Q e. LMod ) | 
						
							| 32 | 6 | ralrimiva |  |-  ( ph -> A. k e. D W e. K ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ph /\ d e. D ) -> A. k e. D W e. K ) | 
						
							| 34 |  | rspcsbela |  |-  ( ( d e. D /\ A. k e. D W e. K ) -> [_ d / k ]_ W e. K ) | 
						
							| 35 | 17 33 34 | syl2anc |  |-  ( ( ph /\ d e. D ) -> [_ d / k ]_ W e. K ) | 
						
							| 36 |  | eqid |  |-  ( Scalar ` Q ) = ( Scalar ` Q ) | 
						
							| 37 |  | eqid |  |-  ( 0g ` ( Scalar ` Q ) ) = ( 0g ` ( Scalar ` Q ) ) | 
						
							| 38 | 4 36 9 37 7 | lmod0vs |  |-  ( ( Q e. LMod /\ [_ d / k ]_ W e. K ) -> ( ( 0g ` ( Scalar ` Q ) ) .* [_ d / k ]_ W ) = .0. ) | 
						
							| 39 | 31 35 38 | syl2anc |  |-  ( ( ph /\ d e. D ) -> ( ( 0g ` ( Scalar ` Q ) ) .* [_ d / k ]_ W ) = .0. ) | 
						
							| 40 | 30 39 | eqtrd |  |-  ( ( ph /\ d e. D ) -> ( Z .* [_ d / k ]_ W ) = .0. ) | 
						
							| 41 | 26 40 | sylan9eqr |  |-  ( ( ( ph /\ d e. D ) /\ [_ d / k ]_ S = Z ) -> ( [_ d / k ]_ S .* [_ d / k ]_ W ) = .0. ) | 
						
							| 42 |  | csbov12g |  |-  ( d e. D -> [_ d / k ]_ ( S .* W ) = ( [_ d / k ]_ S .* [_ d / k ]_ W ) ) | 
						
							| 43 | 42 | adantl |  |-  ( ( ph /\ d e. D ) -> [_ d / k ]_ ( S .* W ) = ( [_ d / k ]_ S .* [_ d / k ]_ W ) ) | 
						
							| 44 |  | ovex |  |-  ( [_ d / k ]_ S .* [_ d / k ]_ W ) e. _V | 
						
							| 45 | 43 44 | eqeltrdi |  |-  ( ( ph /\ d e. D ) -> [_ d / k ]_ ( S .* W ) e. _V ) | 
						
							| 46 |  | eqid |  |-  ( k e. D |-> ( S .* W ) ) = ( k e. D |-> ( S .* W ) ) | 
						
							| 47 | 46 | fvmpts |  |-  ( ( d e. D /\ [_ d / k ]_ ( S .* W ) e. _V ) -> ( ( k e. D |-> ( S .* W ) ) ` d ) = [_ d / k ]_ ( S .* W ) ) | 
						
							| 48 | 17 45 47 | syl2anc |  |-  ( ( ph /\ d e. D ) -> ( ( k e. D |-> ( S .* W ) ) ` d ) = [_ d / k ]_ ( S .* W ) ) | 
						
							| 49 | 48 43 | eqtrd |  |-  ( ( ph /\ d e. D ) -> ( ( k e. D |-> ( S .* W ) ) ` d ) = ( [_ d / k ]_ S .* [_ d / k ]_ W ) ) | 
						
							| 50 | 49 | eqeq1d |  |-  ( ( ph /\ d e. D ) -> ( ( ( k e. D |-> ( S .* W ) ) ` d ) = .0. <-> ( [_ d / k ]_ S .* [_ d / k ]_ W ) = .0. ) ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ( ph /\ d e. D ) /\ [_ d / k ]_ S = Z ) -> ( ( ( k e. D |-> ( S .* W ) ) ` d ) = .0. <-> ( [_ d / k ]_ S .* [_ d / k ]_ W ) = .0. ) ) | 
						
							| 52 | 41 51 | mpbird |  |-  ( ( ( ph /\ d e. D ) /\ [_ d / k ]_ S = Z ) -> ( ( k e. D |-> ( S .* W ) ) ` d ) = .0. ) | 
						
							| 53 | 52 | ex |  |-  ( ( ph /\ d e. D ) -> ( [_ d / k ]_ S = Z -> ( ( k e. D |-> ( S .* W ) ) ` d ) = .0. ) ) | 
						
							| 54 | 25 53 | sylbid |  |-  ( ( ph /\ d e. D ) -> ( ( ( k e. D |-> S ) ` d ) = Z -> ( ( k e. D |-> ( S .* W ) ) ` d ) = .0. ) ) | 
						
							| 55 | 54 | necon3d |  |-  ( ( ph /\ d e. D ) -> ( ( ( k e. D |-> ( S .* W ) ) ` d ) =/= .0. -> ( ( k e. D |-> S ) ` d ) =/= Z ) ) | 
						
							| 56 | 55 | ss2rabdv |  |-  ( ph -> { d e. D | ( ( k e. D |-> ( S .* W ) ) ` d ) =/= .0. } C_ { d e. D | ( ( k e. D |-> S ) ` d ) =/= Z } ) | 
						
							| 57 |  | ovex |  |-  ( S .* W ) e. _V | 
						
							| 58 | 57 | rgenw |  |-  A. k e. D ( S .* W ) e. _V | 
						
							| 59 | 46 | fnmpt |  |-  ( A. k e. D ( S .* W ) e. _V -> ( k e. D |-> ( S .* W ) ) Fn D ) | 
						
							| 60 | 58 59 | mp1i |  |-  ( ph -> ( k e. D |-> ( S .* W ) ) Fn D ) | 
						
							| 61 |  | suppvalfn |  |-  ( ( ( k e. D |-> ( S .* W ) ) Fn D /\ D e. V /\ .0. e. _V ) -> ( ( k e. D |-> ( S .* W ) ) supp .0. ) = { d e. D | ( ( k e. D |-> ( S .* W ) ) ` d ) =/= .0. } ) | 
						
							| 62 | 60 1 15 61 | syl3anc |  |-  ( ph -> ( ( k e. D |-> ( S .* W ) ) supp .0. ) = { d e. D | ( ( k e. D |-> ( S .* W ) ) ` d ) =/= .0. } ) | 
						
							| 63 | 22 | fnmpt |  |-  ( A. k e. D S e. B -> ( k e. D |-> S ) Fn D ) | 
						
							| 64 | 18 63 | syl |  |-  ( ph -> ( k e. D |-> S ) Fn D ) | 
						
							| 65 | 8 | fvexi |  |-  Z e. _V | 
						
							| 66 | 65 | a1i |  |-  ( ph -> Z e. _V ) | 
						
							| 67 |  | suppvalfn |  |-  ( ( ( k e. D |-> S ) Fn D /\ D e. V /\ Z e. _V ) -> ( ( k e. D |-> S ) supp Z ) = { d e. D | ( ( k e. D |-> S ) ` d ) =/= Z } ) | 
						
							| 68 | 64 1 66 67 | syl3anc |  |-  ( ph -> ( ( k e. D |-> S ) supp Z ) = { d e. D | ( ( k e. D |-> S ) ` d ) =/= Z } ) | 
						
							| 69 | 56 62 68 | 3sstr4d |  |-  ( ph -> ( ( k e. D |-> ( S .* W ) ) supp .0. ) C_ ( ( k e. D |-> S ) supp Z ) ) | 
						
							| 70 |  | suppssfifsupp |  |-  ( ( ( ( k e. D |-> ( S .* W ) ) e. _V /\ Fun ( k e. D |-> ( S .* W ) ) /\ .0. e. _V ) /\ ( ( ( k e. D |-> S ) supp Z ) e. Fin /\ ( ( k e. D |-> ( S .* W ) ) supp .0. ) C_ ( ( k e. D |-> S ) supp Z ) ) ) -> ( k e. D |-> ( S .* W ) ) finSupp .0. ) | 
						
							| 71 | 11 13 15 16 69 70 | syl32anc |  |-  ( ph -> ( k e. D |-> ( S .* W ) ) finSupp .0. ) |