Step |
Hyp |
Ref |
Expression |
1 |
|
mptscmfsupp0.d |
|- ( ph -> D e. V ) |
2 |
|
mptscmfsupp0.q |
|- ( ph -> Q e. LMod ) |
3 |
|
mptscmfsupp0.r |
|- ( ph -> R = ( Scalar ` Q ) ) |
4 |
|
mptscmfsupp0.k |
|- K = ( Base ` Q ) |
5 |
|
mptscmfsupp0.s |
|- ( ( ph /\ k e. D ) -> S e. B ) |
6 |
|
mptscmfsupp0.w |
|- ( ( ph /\ k e. D ) -> W e. K ) |
7 |
|
mptscmfsupp0.0 |
|- .0. = ( 0g ` Q ) |
8 |
|
mptscmfsupp0.z |
|- Z = ( 0g ` R ) |
9 |
|
mptscmfsupp0.m |
|- .* = ( .s ` Q ) |
10 |
|
mptscmfsupp0.f |
|- ( ph -> ( k e. D |-> S ) finSupp Z ) |
11 |
1
|
mptexd |
|- ( ph -> ( k e. D |-> ( S .* W ) ) e. _V ) |
12 |
|
funmpt |
|- Fun ( k e. D |-> ( S .* W ) ) |
13 |
12
|
a1i |
|- ( ph -> Fun ( k e. D |-> ( S .* W ) ) ) |
14 |
7
|
fvexi |
|- .0. e. _V |
15 |
14
|
a1i |
|- ( ph -> .0. e. _V ) |
16 |
10
|
fsuppimpd |
|- ( ph -> ( ( k e. D |-> S ) supp Z ) e. Fin ) |
17 |
|
simpr |
|- ( ( ph /\ d e. D ) -> d e. D ) |
18 |
5
|
ralrimiva |
|- ( ph -> A. k e. D S e. B ) |
19 |
18
|
adantr |
|- ( ( ph /\ d e. D ) -> A. k e. D S e. B ) |
20 |
|
rspcsbela |
|- ( ( d e. D /\ A. k e. D S e. B ) -> [_ d / k ]_ S e. B ) |
21 |
17 19 20
|
syl2anc |
|- ( ( ph /\ d e. D ) -> [_ d / k ]_ S e. B ) |
22 |
|
eqid |
|- ( k e. D |-> S ) = ( k e. D |-> S ) |
23 |
22
|
fvmpts |
|- ( ( d e. D /\ [_ d / k ]_ S e. B ) -> ( ( k e. D |-> S ) ` d ) = [_ d / k ]_ S ) |
24 |
17 21 23
|
syl2anc |
|- ( ( ph /\ d e. D ) -> ( ( k e. D |-> S ) ` d ) = [_ d / k ]_ S ) |
25 |
24
|
eqeq1d |
|- ( ( ph /\ d e. D ) -> ( ( ( k e. D |-> S ) ` d ) = Z <-> [_ d / k ]_ S = Z ) ) |
26 |
|
oveq1 |
|- ( [_ d / k ]_ S = Z -> ( [_ d / k ]_ S .* [_ d / k ]_ W ) = ( Z .* [_ d / k ]_ W ) ) |
27 |
3
|
adantr |
|- ( ( ph /\ d e. D ) -> R = ( Scalar ` Q ) ) |
28 |
27
|
fveq2d |
|- ( ( ph /\ d e. D ) -> ( 0g ` R ) = ( 0g ` ( Scalar ` Q ) ) ) |
29 |
8 28
|
eqtrid |
|- ( ( ph /\ d e. D ) -> Z = ( 0g ` ( Scalar ` Q ) ) ) |
30 |
29
|
oveq1d |
|- ( ( ph /\ d e. D ) -> ( Z .* [_ d / k ]_ W ) = ( ( 0g ` ( Scalar ` Q ) ) .* [_ d / k ]_ W ) ) |
31 |
2
|
adantr |
|- ( ( ph /\ d e. D ) -> Q e. LMod ) |
32 |
6
|
ralrimiva |
|- ( ph -> A. k e. D W e. K ) |
33 |
32
|
adantr |
|- ( ( ph /\ d e. D ) -> A. k e. D W e. K ) |
34 |
|
rspcsbela |
|- ( ( d e. D /\ A. k e. D W e. K ) -> [_ d / k ]_ W e. K ) |
35 |
17 33 34
|
syl2anc |
|- ( ( ph /\ d e. D ) -> [_ d / k ]_ W e. K ) |
36 |
|
eqid |
|- ( Scalar ` Q ) = ( Scalar ` Q ) |
37 |
|
eqid |
|- ( 0g ` ( Scalar ` Q ) ) = ( 0g ` ( Scalar ` Q ) ) |
38 |
4 36 9 37 7
|
lmod0vs |
|- ( ( Q e. LMod /\ [_ d / k ]_ W e. K ) -> ( ( 0g ` ( Scalar ` Q ) ) .* [_ d / k ]_ W ) = .0. ) |
39 |
31 35 38
|
syl2anc |
|- ( ( ph /\ d e. D ) -> ( ( 0g ` ( Scalar ` Q ) ) .* [_ d / k ]_ W ) = .0. ) |
40 |
30 39
|
eqtrd |
|- ( ( ph /\ d e. D ) -> ( Z .* [_ d / k ]_ W ) = .0. ) |
41 |
26 40
|
sylan9eqr |
|- ( ( ( ph /\ d e. D ) /\ [_ d / k ]_ S = Z ) -> ( [_ d / k ]_ S .* [_ d / k ]_ W ) = .0. ) |
42 |
|
csbov12g |
|- ( d e. D -> [_ d / k ]_ ( S .* W ) = ( [_ d / k ]_ S .* [_ d / k ]_ W ) ) |
43 |
42
|
adantl |
|- ( ( ph /\ d e. D ) -> [_ d / k ]_ ( S .* W ) = ( [_ d / k ]_ S .* [_ d / k ]_ W ) ) |
44 |
|
ovex |
|- ( [_ d / k ]_ S .* [_ d / k ]_ W ) e. _V |
45 |
43 44
|
eqeltrdi |
|- ( ( ph /\ d e. D ) -> [_ d / k ]_ ( S .* W ) e. _V ) |
46 |
|
eqid |
|- ( k e. D |-> ( S .* W ) ) = ( k e. D |-> ( S .* W ) ) |
47 |
46
|
fvmpts |
|- ( ( d e. D /\ [_ d / k ]_ ( S .* W ) e. _V ) -> ( ( k e. D |-> ( S .* W ) ) ` d ) = [_ d / k ]_ ( S .* W ) ) |
48 |
17 45 47
|
syl2anc |
|- ( ( ph /\ d e. D ) -> ( ( k e. D |-> ( S .* W ) ) ` d ) = [_ d / k ]_ ( S .* W ) ) |
49 |
48 43
|
eqtrd |
|- ( ( ph /\ d e. D ) -> ( ( k e. D |-> ( S .* W ) ) ` d ) = ( [_ d / k ]_ S .* [_ d / k ]_ W ) ) |
50 |
49
|
eqeq1d |
|- ( ( ph /\ d e. D ) -> ( ( ( k e. D |-> ( S .* W ) ) ` d ) = .0. <-> ( [_ d / k ]_ S .* [_ d / k ]_ W ) = .0. ) ) |
51 |
50
|
adantr |
|- ( ( ( ph /\ d e. D ) /\ [_ d / k ]_ S = Z ) -> ( ( ( k e. D |-> ( S .* W ) ) ` d ) = .0. <-> ( [_ d / k ]_ S .* [_ d / k ]_ W ) = .0. ) ) |
52 |
41 51
|
mpbird |
|- ( ( ( ph /\ d e. D ) /\ [_ d / k ]_ S = Z ) -> ( ( k e. D |-> ( S .* W ) ) ` d ) = .0. ) |
53 |
52
|
ex |
|- ( ( ph /\ d e. D ) -> ( [_ d / k ]_ S = Z -> ( ( k e. D |-> ( S .* W ) ) ` d ) = .0. ) ) |
54 |
25 53
|
sylbid |
|- ( ( ph /\ d e. D ) -> ( ( ( k e. D |-> S ) ` d ) = Z -> ( ( k e. D |-> ( S .* W ) ) ` d ) = .0. ) ) |
55 |
54
|
necon3d |
|- ( ( ph /\ d e. D ) -> ( ( ( k e. D |-> ( S .* W ) ) ` d ) =/= .0. -> ( ( k e. D |-> S ) ` d ) =/= Z ) ) |
56 |
55
|
ss2rabdv |
|- ( ph -> { d e. D | ( ( k e. D |-> ( S .* W ) ) ` d ) =/= .0. } C_ { d e. D | ( ( k e. D |-> S ) ` d ) =/= Z } ) |
57 |
|
ovex |
|- ( S .* W ) e. _V |
58 |
57
|
rgenw |
|- A. k e. D ( S .* W ) e. _V |
59 |
46
|
fnmpt |
|- ( A. k e. D ( S .* W ) e. _V -> ( k e. D |-> ( S .* W ) ) Fn D ) |
60 |
58 59
|
mp1i |
|- ( ph -> ( k e. D |-> ( S .* W ) ) Fn D ) |
61 |
|
suppvalfn |
|- ( ( ( k e. D |-> ( S .* W ) ) Fn D /\ D e. V /\ .0. e. _V ) -> ( ( k e. D |-> ( S .* W ) ) supp .0. ) = { d e. D | ( ( k e. D |-> ( S .* W ) ) ` d ) =/= .0. } ) |
62 |
60 1 15 61
|
syl3anc |
|- ( ph -> ( ( k e. D |-> ( S .* W ) ) supp .0. ) = { d e. D | ( ( k e. D |-> ( S .* W ) ) ` d ) =/= .0. } ) |
63 |
22
|
fnmpt |
|- ( A. k e. D S e. B -> ( k e. D |-> S ) Fn D ) |
64 |
18 63
|
syl |
|- ( ph -> ( k e. D |-> S ) Fn D ) |
65 |
8
|
fvexi |
|- Z e. _V |
66 |
65
|
a1i |
|- ( ph -> Z e. _V ) |
67 |
|
suppvalfn |
|- ( ( ( k e. D |-> S ) Fn D /\ D e. V /\ Z e. _V ) -> ( ( k e. D |-> S ) supp Z ) = { d e. D | ( ( k e. D |-> S ) ` d ) =/= Z } ) |
68 |
64 1 66 67
|
syl3anc |
|- ( ph -> ( ( k e. D |-> S ) supp Z ) = { d e. D | ( ( k e. D |-> S ) ` d ) =/= Z } ) |
69 |
56 62 68
|
3sstr4d |
|- ( ph -> ( ( k e. D |-> ( S .* W ) ) supp .0. ) C_ ( ( k e. D |-> S ) supp Z ) ) |
70 |
|
suppssfifsupp |
|- ( ( ( ( k e. D |-> ( S .* W ) ) e. _V /\ Fun ( k e. D |-> ( S .* W ) ) /\ .0. e. _V ) /\ ( ( ( k e. D |-> S ) supp Z ) e. Fin /\ ( ( k e. D |-> ( S .* W ) ) supp .0. ) C_ ( ( k e. D |-> S ) supp Z ) ) ) -> ( k e. D |-> ( S .* W ) ) finSupp .0. ) |
71 |
11 13 15 16 69 70
|
syl32anc |
|- ( ph -> ( k e. D |-> ( S .* W ) ) finSupp .0. ) |