Metamath Proof Explorer


Theorem mptscmfsuppd

Description: A function mapping to a scalar product in which one factor is finitely supported is finitely supported. Formerly part of proof for ply1coe . (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 8-Aug-2019) (Proof shortened by AV, 18-Oct-2019)

Ref Expression
Hypotheses mptscmfsuppd.b
|- B = ( Base ` P )
mptscmfsuppd.s
|- S = ( Scalar ` P )
mptscmfsuppd.n
|- .x. = ( .s ` P )
mptscmfsuppd.p
|- ( ph -> P e. LMod )
mptscmfsuppd.x
|- ( ph -> X e. V )
mptscmfsuppd.z
|- ( ( ph /\ k e. X ) -> Z e. B )
mptscmfsuppd.a
|- ( ph -> A : X --> Y )
mptscmfsuppd.f
|- ( ph -> A finSupp ( 0g ` S ) )
Assertion mptscmfsuppd
|- ( ph -> ( k e. X |-> ( ( A ` k ) .x. Z ) ) finSupp ( 0g ` P ) )

Proof

Step Hyp Ref Expression
1 mptscmfsuppd.b
 |-  B = ( Base ` P )
2 mptscmfsuppd.s
 |-  S = ( Scalar ` P )
3 mptscmfsuppd.n
 |-  .x. = ( .s ` P )
4 mptscmfsuppd.p
 |-  ( ph -> P e. LMod )
5 mptscmfsuppd.x
 |-  ( ph -> X e. V )
6 mptscmfsuppd.z
 |-  ( ( ph /\ k e. X ) -> Z e. B )
7 mptscmfsuppd.a
 |-  ( ph -> A : X --> Y )
8 mptscmfsuppd.f
 |-  ( ph -> A finSupp ( 0g ` S ) )
9 2 a1i
 |-  ( ph -> S = ( Scalar ` P ) )
10 fvexd
 |-  ( ( ph /\ k e. X ) -> ( A ` k ) e. _V )
11 eqid
 |-  ( 0g ` P ) = ( 0g ` P )
12 eqid
 |-  ( 0g ` S ) = ( 0g ` S )
13 7 feqmptd
 |-  ( ph -> A = ( k e. X |-> ( A ` k ) ) )
14 13 8 eqbrtrrd
 |-  ( ph -> ( k e. X |-> ( A ` k ) ) finSupp ( 0g ` S ) )
15 5 4 9 1 10 6 11 12 3 14 mptscmfsupp0
 |-  ( ph -> ( k e. X |-> ( ( A ` k ) .x. Z ) ) finSupp ( 0g ` P ) )