Description: A function mapping to a scalar product in which one factor is finitely supported is finitely supported. Formerly part of proof for ply1coe . (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 8-Aug-2019) (Proof shortened by AV, 18-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mptscmfsuppd.b | |- B = ( Base ` P ) |
|
mptscmfsuppd.s | |- S = ( Scalar ` P ) |
||
mptscmfsuppd.n | |- .x. = ( .s ` P ) |
||
mptscmfsuppd.p | |- ( ph -> P e. LMod ) |
||
mptscmfsuppd.x | |- ( ph -> X e. V ) |
||
mptscmfsuppd.z | |- ( ( ph /\ k e. X ) -> Z e. B ) |
||
mptscmfsuppd.a | |- ( ph -> A : X --> Y ) |
||
mptscmfsuppd.f | |- ( ph -> A finSupp ( 0g ` S ) ) |
||
Assertion | mptscmfsuppd | |- ( ph -> ( k e. X |-> ( ( A ` k ) .x. Z ) ) finSupp ( 0g ` P ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptscmfsuppd.b | |- B = ( Base ` P ) |
|
2 | mptscmfsuppd.s | |- S = ( Scalar ` P ) |
|
3 | mptscmfsuppd.n | |- .x. = ( .s ` P ) |
|
4 | mptscmfsuppd.p | |- ( ph -> P e. LMod ) |
|
5 | mptscmfsuppd.x | |- ( ph -> X e. V ) |
|
6 | mptscmfsuppd.z | |- ( ( ph /\ k e. X ) -> Z e. B ) |
|
7 | mptscmfsuppd.a | |- ( ph -> A : X --> Y ) |
|
8 | mptscmfsuppd.f | |- ( ph -> A finSupp ( 0g ` S ) ) |
|
9 | 2 | a1i | |- ( ph -> S = ( Scalar ` P ) ) |
10 | fvexd | |- ( ( ph /\ k e. X ) -> ( A ` k ) e. _V ) |
|
11 | eqid | |- ( 0g ` P ) = ( 0g ` P ) |
|
12 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
13 | 7 | feqmptd | |- ( ph -> A = ( k e. X |-> ( A ` k ) ) ) |
14 | 13 8 | eqbrtrrd | |- ( ph -> ( k e. X |-> ( A ` k ) ) finSupp ( 0g ` S ) ) |
15 | 5 4 9 1 10 6 11 12 3 14 | mptscmfsupp0 | |- ( ph -> ( k e. X |-> ( ( A ` k ) .x. Z ) ) finSupp ( 0g ` P ) ) |