Description: Deduce subset relation of mapping-to function graphs from a subset relation of domains. Alternative proof of mptss . (Contributed by Thierry Arnoux, 30-May-2020) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | mptssALT | |- ( A C_ B -> ( x e. A |-> C ) C_ ( x e. B |-> C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel | |- ( A C_ B -> ( x e. A -> x e. B ) ) |
|
2 | 1 | anim1d | |- ( A C_ B -> ( ( x e. A /\ y = C ) -> ( x e. B /\ y = C ) ) ) |
3 | 2 | ssopab2dv | |- ( A C_ B -> { <. x , y >. | ( x e. A /\ y = C ) } C_ { <. x , y >. | ( x e. B /\ y = C ) } ) |
4 | df-mpt | |- ( x e. A |-> C ) = { <. x , y >. | ( x e. A /\ y = C ) } |
|
5 | df-mpt | |- ( x e. B |-> C ) = { <. x , y >. | ( x e. B /\ y = C ) } |
|
6 | 3 4 5 | 3sstr4g | |- ( A C_ B -> ( x e. A |-> C ) C_ ( x e. B |-> C ) ) |