Metamath Proof Explorer


Theorem mptssALT

Description: Deduce subset relation of mapping-to function graphs from a subset relation of domains. Alternative proof of mptss . (Contributed by Thierry Arnoux, 30-May-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion mptssALT
|- ( A C_ B -> ( x e. A |-> C ) C_ ( x e. B |-> C ) )

Proof

Step Hyp Ref Expression
1 ssel
 |-  ( A C_ B -> ( x e. A -> x e. B ) )
2 1 anim1d
 |-  ( A C_ B -> ( ( x e. A /\ y = C ) -> ( x e. B /\ y = C ) ) )
3 2 ssopab2dv
 |-  ( A C_ B -> { <. x , y >. | ( x e. A /\ y = C ) } C_ { <. x , y >. | ( x e. B /\ y = C ) } )
4 df-mpt
 |-  ( x e. A |-> C ) = { <. x , y >. | ( x e. A /\ y = C ) }
5 df-mpt
 |-  ( x e. B |-> C ) = { <. x , y >. | ( x e. B /\ y = C ) }
6 3 4 5 3sstr4g
 |-  ( A C_ B -> ( x e. A |-> C ) C_ ( x e. B |-> C ) )