| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mptsuppdifd.f |
|- F = ( x e. A |-> B ) |
| 2 |
|
mptsuppdifd.a |
|- ( ph -> A e. V ) |
| 3 |
|
mptsuppdifd.z |
|- ( ph -> Z e. W ) |
| 4 |
|
mptsuppd.b |
|- ( ( ph /\ x e. A ) -> B e. U ) |
| 5 |
1 2 3
|
mptsuppdifd |
|- ( ph -> ( F supp Z ) = { x e. A | B e. ( _V \ { Z } ) } ) |
| 6 |
|
eldifsn |
|- ( B e. ( _V \ { Z } ) <-> ( B e. _V /\ B =/= Z ) ) |
| 7 |
4
|
elexd |
|- ( ( ph /\ x e. A ) -> B e. _V ) |
| 8 |
7
|
biantrurd |
|- ( ( ph /\ x e. A ) -> ( B =/= Z <-> ( B e. _V /\ B =/= Z ) ) ) |
| 9 |
6 8
|
bitr4id |
|- ( ( ph /\ x e. A ) -> ( B e. ( _V \ { Z } ) <-> B =/= Z ) ) |
| 10 |
9
|
rabbidva |
|- ( ph -> { x e. A | B e. ( _V \ { Z } ) } = { x e. A | B =/= Z } ) |
| 11 |
5 10
|
eqtrd |
|- ( ph -> ( F supp Z ) = { x e. A | B =/= Z } ) |