Step |
Hyp |
Ref |
Expression |
1 |
|
mptsuppdifd.f |
|- F = ( x e. A |-> B ) |
2 |
|
mptsuppdifd.a |
|- ( ph -> A e. V ) |
3 |
|
mptsuppdifd.z |
|- ( ph -> Z e. W ) |
4 |
2
|
mptexd |
|- ( ph -> ( x e. A |-> B ) e. _V ) |
5 |
1 4
|
eqeltrid |
|- ( ph -> F e. _V ) |
6 |
|
suppimacnv |
|- ( ( F e. _V /\ Z e. W ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
7 |
5 3 6
|
syl2anc |
|- ( ph -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
8 |
1
|
mptpreima |
|- ( `' F " ( _V \ { Z } ) ) = { x e. A | B e. ( _V \ { Z } ) } |
9 |
7 8
|
eqtrdi |
|- ( ph -> ( F supp Z ) = { x e. A | B e. ( _V \ { Z } ) } ) |