Metamath Proof Explorer


Theorem mptxor

Description: Modus ponendo tollens 2, one of the "indemonstrables" in Stoic logic. Note that this uses exclusive-or \/_ . See rule 2 on Lopez-Astorga p. 12 , rule 4 on Sanford p. 39 and rule A4 in Hitchcock p. 5 . (Contributed by David A. Wheeler, 3-Jul-2016) (Proof shortened by Wolf Lammen, 12-Nov-2017) (Proof shortened by BJ, 19-Apr-2019)

Ref Expression
Hypotheses mptxor.min
|- ph
mptxor.maj
|- ( ph \/_ ps )
Assertion mptxor
|- -. ps

Proof

Step Hyp Ref Expression
1 mptxor.min
 |-  ph
2 mptxor.maj
 |-  ( ph \/_ ps )
3 xornan
 |-  ( ( ph \/_ ps ) -> -. ( ph /\ ps ) )
4 2 3 ax-mp
 |-  -. ( ph /\ ps )
5 1 4 mptnan
 |-  -. ps