Metamath Proof Explorer


Theorem mrccl

Description: The Moore closure of a set is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f
|- F = ( mrCls ` C )
Assertion mrccl
|- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` U ) e. C )

Proof

Step Hyp Ref Expression
1 mrcfval.f
 |-  F = ( mrCls ` C )
2 1 mrcf
 |-  ( C e. ( Moore ` X ) -> F : ~P X --> C )
3 2 adantr
 |-  ( ( C e. ( Moore ` X ) /\ U C_ X ) -> F : ~P X --> C )
4 mre1cl
 |-  ( C e. ( Moore ` X ) -> X e. C )
5 elpw2g
 |-  ( X e. C -> ( U e. ~P X <-> U C_ X ) )
6 4 5 syl
 |-  ( C e. ( Moore ` X ) -> ( U e. ~P X <-> U C_ X ) )
7 6 biimpar
 |-  ( ( C e. ( Moore ` X ) /\ U C_ X ) -> U e. ~P X )
8 3 7 ffvelrnd
 |-  ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` U ) e. C )