Description: The Moore closure of a set is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mrcfval.f | |- F = ( mrCls ` C ) |
|
| Assertion | mrccl | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` U ) e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | |- F = ( mrCls ` C ) |
|
| 2 | 1 | mrcf | |- ( C e. ( Moore ` X ) -> F : ~P X --> C ) |
| 3 | 2 | adantr | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> F : ~P X --> C ) |
| 4 | mre1cl | |- ( C e. ( Moore ` X ) -> X e. C ) |
|
| 5 | elpw2g | |- ( X e. C -> ( U e. ~P X <-> U C_ X ) ) |
|
| 6 | 4 5 | syl | |- ( C e. ( Moore ` X ) -> ( U e. ~P X <-> U C_ X ) ) |
| 7 | 6 | biimpar | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> U e. ~P X ) |
| 8 | 3 7 | ffvelcdmd | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` U ) e. C ) |