Description: The Moore closure is a function mapping arbitrary subsets to closed sets. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mrcfval.f | |- F = ( mrCls ` C ) | |
| Assertion | mrcf | |- ( C e. ( Moore ` X ) -> F : ~P X --> C ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mrcfval.f | |- F = ( mrCls ` C ) | |
| 2 | mrcflem |  |-  ( C e. ( Moore ` X ) -> ( x e. ~P X |-> |^| { s e. C | x C_ s } ) : ~P X --> C ) | |
| 3 | 1 | mrcfval |  |-  ( C e. ( Moore ` X ) -> F = ( x e. ~P X |-> |^| { s e. C | x C_ s } ) ) | 
| 4 | 3 | feq1d |  |-  ( C e. ( Moore ` X ) -> ( F : ~P X --> C <-> ( x e. ~P X |-> |^| { s e. C | x C_ s } ) : ~P X --> C ) ) | 
| 5 | 2 4 | mpbird | |- ( C e. ( Moore ` X ) -> F : ~P X --> C ) |