Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( C e. ( Moore ` X ) /\ x e. ~P X ) -> C e. ( Moore ` X ) ) |
2 |
|
ssrab2 |
|- { s e. C | x C_ s } C_ C |
3 |
2
|
a1i |
|- ( ( C e. ( Moore ` X ) /\ x e. ~P X ) -> { s e. C | x C_ s } C_ C ) |
4 |
|
sseq2 |
|- ( s = X -> ( x C_ s <-> x C_ X ) ) |
5 |
|
mre1cl |
|- ( C e. ( Moore ` X ) -> X e. C ) |
6 |
5
|
adantr |
|- ( ( C e. ( Moore ` X ) /\ x e. ~P X ) -> X e. C ) |
7 |
|
elpwi |
|- ( x e. ~P X -> x C_ X ) |
8 |
7
|
adantl |
|- ( ( C e. ( Moore ` X ) /\ x e. ~P X ) -> x C_ X ) |
9 |
4 6 8
|
elrabd |
|- ( ( C e. ( Moore ` X ) /\ x e. ~P X ) -> X e. { s e. C | x C_ s } ) |
10 |
9
|
ne0d |
|- ( ( C e. ( Moore ` X ) /\ x e. ~P X ) -> { s e. C | x C_ s } =/= (/) ) |
11 |
|
mreintcl |
|- ( ( C e. ( Moore ` X ) /\ { s e. C | x C_ s } C_ C /\ { s e. C | x C_ s } =/= (/) ) -> |^| { s e. C | x C_ s } e. C ) |
12 |
1 3 10 11
|
syl3anc |
|- ( ( C e. ( Moore ` X ) /\ x e. ~P X ) -> |^| { s e. C | x C_ s } e. C ) |
13 |
12
|
fmpttd |
|- ( C e. ( Moore ` X ) -> ( x e. ~P X |-> |^| { s e. C | x C_ s } ) : ~P X --> C ) |