| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mrcfval.f |  |-  F = ( mrCls ` C ) | 
						
							| 2 |  | mress |  |-  ( ( C e. ( Moore ` X ) /\ U e. C ) -> U C_ X ) | 
						
							| 3 | 1 | mrcval |  |-  ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` U ) = |^| { s e. C | U C_ s } ) | 
						
							| 4 | 2 3 | syldan |  |-  ( ( C e. ( Moore ` X ) /\ U e. C ) -> ( F ` U ) = |^| { s e. C | U C_ s } ) | 
						
							| 5 |  | intmin |  |-  ( U e. C -> |^| { s e. C | U C_ s } = U ) | 
						
							| 6 | 5 | adantl |  |-  ( ( C e. ( Moore ` X ) /\ U e. C ) -> |^| { s e. C | U C_ s } = U ) | 
						
							| 7 | 4 6 | eqtrd |  |-  ( ( C e. ( Moore ` X ) /\ U e. C ) -> ( F ` U ) = U ) |