Step |
Hyp |
Ref |
Expression |
1 |
|
mrcfval.f |
|- F = ( mrCls ` C ) |
2 |
|
mress |
|- ( ( C e. ( Moore ` X ) /\ U e. C ) -> U C_ X ) |
3 |
1
|
mrcval |
|- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` U ) = |^| { s e. C | U C_ s } ) |
4 |
2 3
|
syldan |
|- ( ( C e. ( Moore ` X ) /\ U e. C ) -> ( F ` U ) = |^| { s e. C | U C_ s } ) |
5 |
|
intmin |
|- ( U e. C -> |^| { s e. C | U C_ s } = U ) |
6 |
5
|
adantl |
|- ( ( C e. ( Moore ` X ) /\ U e. C ) -> |^| { s e. C | U C_ s } = U ) |
7 |
4 6
|
eqtrd |
|- ( ( C e. ( Moore ` X ) /\ U e. C ) -> ( F ` U ) = U ) |