| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mrcfval.f |  |-  F = ( mrCls ` C ) | 
						
							| 2 | 1 | mrcid |  |-  ( ( C e. ( Moore ` X ) /\ U e. C ) -> ( F ` U ) = U ) | 
						
							| 3 |  | simpr |  |-  ( ( C e. ( Moore ` X ) /\ ( F ` U ) = U ) -> ( F ` U ) = U ) | 
						
							| 4 | 1 | mrcssv |  |-  ( C e. ( Moore ` X ) -> ( F ` U ) C_ X ) | 
						
							| 5 | 4 | adantr |  |-  ( ( C e. ( Moore ` X ) /\ ( F ` U ) = U ) -> ( F ` U ) C_ X ) | 
						
							| 6 | 3 5 | eqsstrrd |  |-  ( ( C e. ( Moore ` X ) /\ ( F ` U ) = U ) -> U C_ X ) | 
						
							| 7 | 1 | mrccl |  |-  ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` U ) e. C ) | 
						
							| 8 | 6 7 | syldan |  |-  ( ( C e. ( Moore ` X ) /\ ( F ` U ) = U ) -> ( F ` U ) e. C ) | 
						
							| 9 | 3 8 | eqeltrrd |  |-  ( ( C e. ( Moore ` X ) /\ ( F ` U ) = U ) -> U e. C ) | 
						
							| 10 | 2 9 | impbida |  |-  ( C e. ( Moore ` X ) -> ( U e. C <-> ( F ` U ) = U ) ) |