Metamath Proof Explorer


Theorem mrcidm

Description: The closure operation is idempotent. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f
|- F = ( mrCls ` C )
Assertion mrcidm
|- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` ( F ` U ) ) = ( F ` U ) )

Proof

Step Hyp Ref Expression
1 mrcfval.f
 |-  F = ( mrCls ` C )
2 1 mrccl
 |-  ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` U ) e. C )
3 1 mrcid
 |-  ( ( C e. ( Moore ` X ) /\ ( F ` U ) e. C ) -> ( F ` ( F ` U ) ) = ( F ` U ) )
4 2 3 syldan
 |-  ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` ( F ` U ) ) = ( F ` U ) )