Description: The closure operation is idempotent. (Contributed by Stefan O'Rear, 31-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mrcfval.f | |- F = ( mrCls ` C ) |
|
Assertion | mrcidm | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` ( F ` U ) ) = ( F ` U ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcfval.f | |- F = ( mrCls ` C ) |
|
2 | 1 | mrccl | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` U ) e. C ) |
3 | 1 | mrcid | |- ( ( C e. ( Moore ` X ) /\ ( F ` U ) e. C ) -> ( F ` ( F ` U ) ) = ( F ` U ) ) |
4 | 2 3 | syldan | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` ( F ` U ) ) = ( F ` U ) ) |