Metamath Proof Explorer


Theorem mrcidmd

Description: Moore closure is idempotent. Deduction form of mrcidm . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mrcssidd.1
|- ( ph -> A e. ( Moore ` X ) )
mrcssidd.2
|- N = ( mrCls ` A )
mrcssidd.3
|- ( ph -> U C_ X )
Assertion mrcidmd
|- ( ph -> ( N ` ( N ` U ) ) = ( N ` U ) )

Proof

Step Hyp Ref Expression
1 mrcssidd.1
 |-  ( ph -> A e. ( Moore ` X ) )
2 mrcssidd.2
 |-  N = ( mrCls ` A )
3 mrcssidd.3
 |-  ( ph -> U C_ X )
4 2 mrcidm
 |-  ( ( A e. ( Moore ` X ) /\ U C_ X ) -> ( N ` ( N ` U ) ) = ( N ` U ) )
5 1 3 4 syl2anc
 |-  ( ph -> ( N ` ( N ` U ) ) = ( N ` U ) )