| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mrclsp.u |  |-  U = ( LSubSp ` W ) | 
						
							| 2 |  | mrclsp.k |  |-  K = ( LSpan ` W ) | 
						
							| 3 |  | mrclsp.f |  |-  F = ( mrCls ` U ) | 
						
							| 4 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 5 | 4 1 2 | lspfval |  |-  ( W e. LMod -> K = ( a e. ~P ( Base ` W ) |-> |^| { b e. U | a C_ b } ) ) | 
						
							| 6 | 4 1 | lssmre |  |-  ( W e. LMod -> U e. ( Moore ` ( Base ` W ) ) ) | 
						
							| 7 | 3 | mrcfval |  |-  ( U e. ( Moore ` ( Base ` W ) ) -> F = ( a e. ~P ( Base ` W ) |-> |^| { b e. U | a C_ b } ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( W e. LMod -> F = ( a e. ~P ( Base ` W ) |-> |^| { b e. U | a C_ b } ) ) | 
						
							| 9 | 5 8 | eqtr4d |  |-  ( W e. LMod -> K = F ) |