Step |
Hyp |
Ref |
Expression |
1 |
|
mrclsp.u |
|- U = ( LSubSp ` W ) |
2 |
|
mrclsp.k |
|- K = ( LSpan ` W ) |
3 |
|
mrclsp.f |
|- F = ( mrCls ` U ) |
4 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
5 |
4 1 2
|
lspfval |
|- ( W e. LMod -> K = ( a e. ~P ( Base ` W ) |-> |^| { b e. U | a C_ b } ) ) |
6 |
4 1
|
lssmre |
|- ( W e. LMod -> U e. ( Moore ` ( Base ` W ) ) ) |
7 |
3
|
mrcfval |
|- ( U e. ( Moore ` ( Base ` W ) ) -> F = ( a e. ~P ( Base ` W ) |-> |^| { b e. U | a C_ b } ) ) |
8 |
6 7
|
syl |
|- ( W e. LMod -> F = ( a e. ~P ( Base ` W ) |-> |^| { b e. U | a C_ b } ) ) |
9 |
5 8
|
eqtr4d |
|- ( W e. LMod -> K = F ) |