Description: Moore closure generalizes ideal span. (Contributed by Stefan O'Rear, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mrcrsp.u | |- U = ( LIdeal ` R ) | |
| mrcrsp.k | |- K = ( RSpan ` R ) | ||
| mrcrsp.f | |- F = ( mrCls ` U ) | ||
| Assertion | mrcrsp | |- ( R e. Ring -> K = F ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mrcrsp.u | |- U = ( LIdeal ` R ) | |
| 2 | mrcrsp.k | |- K = ( RSpan ` R ) | |
| 3 | mrcrsp.f | |- F = ( mrCls ` U ) | |
| 4 | rlmlmod | |- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) | |
| 5 | lidlval | |- ( LIdeal ` R ) = ( LSubSp ` ( ringLMod ` R ) ) | |
| 6 | 1 5 | eqtri | |- U = ( LSubSp ` ( ringLMod ` R ) ) | 
| 7 | rspval | |- ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) ) | |
| 8 | 2 7 | eqtri | |- K = ( LSpan ` ( ringLMod ` R ) ) | 
| 9 | 6 8 3 | mrclsp | |- ( ( ringLMod ` R ) e. LMod -> K = F ) | 
| 10 | 4 9 | syl | |- ( R e. Ring -> K = F ) |