Metamath Proof Explorer


Theorem mrcsncl

Description: The Moore closure of a singleton is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f
|- F = ( mrCls ` C )
Assertion mrcsncl
|- ( ( C e. ( Moore ` X ) /\ U e. X ) -> ( F ` { U } ) e. C )

Proof

Step Hyp Ref Expression
1 mrcfval.f
 |-  F = ( mrCls ` C )
2 snssi
 |-  ( U e. X -> { U } C_ X )
3 1 mrccl
 |-  ( ( C e. ( Moore ` X ) /\ { U } C_ X ) -> ( F ` { U } ) e. C )
4 2 3 sylan2
 |-  ( ( C e. ( Moore ` X ) /\ U e. X ) -> ( F ` { U } ) e. C )