Description: The Moore closure of a singleton is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mrcfval.f | |- F = ( mrCls ` C ) |
|
Assertion | mrcsncl | |- ( ( C e. ( Moore ` X ) /\ U e. X ) -> ( F ` { U } ) e. C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcfval.f | |- F = ( mrCls ` C ) |
|
2 | snssi | |- ( U e. X -> { U } C_ X ) |
|
3 | 1 | mrccl | |- ( ( C e. ( Moore ` X ) /\ { U } C_ X ) -> ( F ` { U } ) e. C ) |
4 | 2 3 | sylan2 | |- ( ( C e. ( Moore ` X ) /\ U e. X ) -> ( F ` { U } ) e. C ) |