| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mrcfval.f | 
							 |-  F = ( mrCls ` C )  | 
						
						
							| 2 | 
							
								
							 | 
							sstr2 | 
							 |-  ( U C_ V -> ( V C_ s -> U C_ s ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( U C_ V /\ s e. C ) -> ( V C_ s -> U C_ s ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							ss2rabdv | 
							 |-  ( U C_ V -> { s e. C | V C_ s } C_ { s e. C | U C_ s } ) | 
						
						
							| 5 | 
							
								
							 | 
							intss | 
							 |-  ( { s e. C | V C_ s } C_ { s e. C | U C_ s } -> |^| { s e. C | U C_ s } C_ |^| { s e. C | V C_ s } ) | 
						
						
							| 6 | 
							
								4 5
							 | 
							syl | 
							 |-  ( U C_ V -> |^| { s e. C | U C_ s } C_ |^| { s e. C | V C_ s } ) | 
						
						
							| 7 | 
							
								6
							 | 
							3ad2ant2 | 
							 |-  ( ( C e. ( Moore ` X ) /\ U C_ V /\ V C_ X ) -> |^| { s e. C | U C_ s } C_ |^| { s e. C | V C_ s } ) | 
						
						
							| 8 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( C e. ( Moore ` X ) /\ U C_ V /\ V C_ X ) -> C e. ( Moore ` X ) )  | 
						
						
							| 9 | 
							
								
							 | 
							sstr | 
							 |-  ( ( U C_ V /\ V C_ X ) -> U C_ X )  | 
						
						
							| 10 | 
							
								9
							 | 
							3adant1 | 
							 |-  ( ( C e. ( Moore ` X ) /\ U C_ V /\ V C_ X ) -> U C_ X )  | 
						
						
							| 11 | 
							
								1
							 | 
							mrcval | 
							 |-  ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` U ) = |^| { s e. C | U C_ s } ) | 
						
						
							| 12 | 
							
								8 10 11
							 | 
							syl2anc | 
							 |-  ( ( C e. ( Moore ` X ) /\ U C_ V /\ V C_ X ) -> ( F ` U ) = |^| { s e. C | U C_ s } ) | 
						
						
							| 13 | 
							
								1
							 | 
							mrcval | 
							 |-  ( ( C e. ( Moore ` X ) /\ V C_ X ) -> ( F ` V ) = |^| { s e. C | V C_ s } ) | 
						
						
							| 14 | 
							
								13
							 | 
							3adant2 | 
							 |-  ( ( C e. ( Moore ` X ) /\ U C_ V /\ V C_ X ) -> ( F ` V ) = |^| { s e. C | V C_ s } ) | 
						
						
							| 15 | 
							
								7 12 14
							 | 
							3sstr4d | 
							 |-  ( ( C e. ( Moore ` X ) /\ U C_ V /\ V C_ X ) -> ( F ` U ) C_ ( F ` V ) )  |