| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrcfval.f |
|- F = ( mrCls ` C ) |
| 2 |
|
mress |
|- ( ( C e. ( Moore ` X ) /\ V e. C ) -> V C_ X ) |
| 3 |
2
|
3adant2 |
|- ( ( C e. ( Moore ` X ) /\ U C_ V /\ V e. C ) -> V C_ X ) |
| 4 |
1
|
mrcss |
|- ( ( C e. ( Moore ` X ) /\ U C_ V /\ V C_ X ) -> ( F ` U ) C_ ( F ` V ) ) |
| 5 |
3 4
|
syld3an3 |
|- ( ( C e. ( Moore ` X ) /\ U C_ V /\ V e. C ) -> ( F ` U ) C_ ( F ` V ) ) |
| 6 |
1
|
mrcid |
|- ( ( C e. ( Moore ` X ) /\ V e. C ) -> ( F ` V ) = V ) |
| 7 |
6
|
3adant2 |
|- ( ( C e. ( Moore ` X ) /\ U C_ V /\ V e. C ) -> ( F ` V ) = V ) |
| 8 |
5 7
|
sseqtrd |
|- ( ( C e. ( Moore ` X ) /\ U C_ V /\ V e. C ) -> ( F ` U ) C_ V ) |