Description: The closure of a set is a superset. (Contributed by Stefan O'Rear, 31-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mrcfval.f | |- F = ( mrCls ` C ) |
|
Assertion | mrcssid | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> U C_ ( F ` U ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcfval.f | |- F = ( mrCls ` C ) |
|
2 | ssintub | |- U C_ |^| { s e. C | U C_ s } |
|
3 | 1 | mrcval | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` U ) = |^| { s e. C | U C_ s } ) |
4 | 2 3 | sseqtrrid | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> U C_ ( F ` U ) ) |