Description: The closure of a set is a superset. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mrcfval.f | |- F = ( mrCls ` C ) |
|
| Assertion | mrcssid | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> U C_ ( F ` U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | |- F = ( mrCls ` C ) |
|
| 2 | ssintub | |- U C_ |^| { s e. C | U C_ s } |
|
| 3 | 1 | mrcval | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` U ) = |^| { s e. C | U C_ s } ) |
| 4 | 2 3 | sseqtrrid | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> U C_ ( F ` U ) ) |