Metamath Proof Explorer


Theorem mrcssid

Description: The closure of a set is a superset. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f
|- F = ( mrCls ` C )
Assertion mrcssid
|- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> U C_ ( F ` U ) )

Proof

Step Hyp Ref Expression
1 mrcfval.f
 |-  F = ( mrCls ` C )
2 ssintub
 |-  U C_ |^| { s e. C | U C_ s }
3 1 mrcval
 |-  ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` U ) = |^| { s e. C | U C_ s } )
4 2 3 sseqtrrid
 |-  ( ( C e. ( Moore ` X ) /\ U C_ X ) -> U C_ ( F ` U ) )