Description: A set is contained in its Moore closure. Deduction form of mrcssid . (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mrcssidd.1 | |- ( ph -> A e. ( Moore ` X ) ) |
|
mrcssidd.2 | |- N = ( mrCls ` A ) |
||
mrcssidd.3 | |- ( ph -> U C_ X ) |
||
Assertion | mrcssidd | |- ( ph -> U C_ ( N ` U ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcssidd.1 | |- ( ph -> A e. ( Moore ` X ) ) |
|
2 | mrcssidd.2 | |- N = ( mrCls ` A ) |
|
3 | mrcssidd.3 | |- ( ph -> U C_ X ) |
|
4 | 2 | mrcssid | |- ( ( A e. ( Moore ` X ) /\ U C_ X ) -> U C_ ( N ` U ) ) |
5 | 1 3 4 | syl2anc | |- ( ph -> U C_ ( N ` U ) ) |